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The Node Distribution of the Random WaypointMobility Model for Wireless Ad Ho
 Networks�Christian Bettstettery Giovanni Restaz Paolo Santiz
Abstra
tThe random waypoint model is a 
ommonly used mobility model in the sim-ulation of ad ho
 networks. It is known that the spatial distribution of networknodes moving a

ording to this model is in general non-uniform. However, a 
losed-form expression of this distribution and an in-depth investigation is still missing.This fa
t impairs the a

ura
y of the 
urrent simulation methodology of ad ho
networks and makes it impossible to relate simulation{based performan
e results to
orresponding analyti
al results.To over
ome these problems, we present a detailed analyti
al study of the spa-tial node distribution generated by random waypoint mobility. More spe
i�
ally,we 
onsider a generalization of the model, in whi
h the pause time of the mobilenodes is 
hosen arbitrarily in ea
h waypoint and a fra
tion of nodes may remainstati
 for the entire simulation time. We show that the stru
ture of the result-ing distribution is the weighted sum of three independent 
omponents: the stati
,pause, and mobility 
omponent. This division enables us to understand how themodel's parameters in
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asymptoti
ally stationary distribution for movement on a line segment and an a
-
urate approximation for a square area. The good quality of this approximationis validated through simulations using various settings of the mobility parameters.In summary, this arti
le gives a fundamental understanding of the behavior of therandom waypoint model.Index Terms: Mobility modeling, random waypoint model, mobile ad ho
networking, simulation1 Introdu
tionPerforman
e analysis in presen
e of mobility is of major importan
e in the design of wire-less 
ommuni
ation and 
omputer networks. Sin
e real movement patterns are diÆ
ult toobtain, a 
ommon approa
h is to use syntheti
 mobility models, whi
h resemble to someextent the behavior of real \mobile entities" (see [2, 10, 13, 15, 19, 22, 36℄). Based on su
hmodels, basi
 
on
lusions with respe
t to 
riti
al network parameters 
an be provided.The most 
ommonly used mobility model in the ad ho
 networking resear
h 
ommunityis the random waypoint (RWP) model [21℄. It is implemented in the simulation tools NS2[25℄ and GloMoSim [35℄ and used in many evaluations of network algorithms and proto
ols(see [9, 11, 18℄). In this sto
hasti
 model, ea
h node of the network 
hooses uniformly atrandom a destination point (\waypoint") in a re
tangular deployment region Q. A nodemoves to this destination with a velo
ity v 
hosen uniformly at random in the interval[vmin; vmax℄. When it rea
hes the destination, it remains stati
 for a prede�ned pause timetp, and then starts moving again a

ording to the same rule.It has been observed in [2,6{8℄ and [28℄ that the spatial distribution of nodes movinga

ording to the RWP model is non-uniform. Although the initial node positioning istypi
ally taken from a uniform random distribution, the mobility model 
hanges thisdistribution during the simulation. This e�e
t, known as border e�e
t [2℄, o

urs be
ausenodes tend to 
ross the 
enter of Q with a relatively high frequen
y. For a long runningtime of the movement pro
ess, the sto
hasti
 distribution of the nodes 
onverges towardan asymptoti
ally stationary distribution with the maximum node density in the middleof Q.
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The non-uniformity of the RWP node distribution has important pra
ti
al 
onse-quen
es. First, it redu
es the appli
ability of existing analyti
al results 
on
erning ad ho
networks, whi
h are typi
ally based on the uniformity assumption. For example, theoret-i
al results with respe
t to routing ([1, 24℄), 
apa
ity ([14, 17℄), 
onne
tivity ([3, 16, 30℄),and minimum power issues 
annot be applied dire
tly in a mobile s
enario that employsthe RWP model. Se
ond, the non-uniform distribution implies that the representative-ness of the huge amount of simulation results obtained by using the RWP model 
ould beimpaired. This is be
ause the short-term behavior of the RWP model is quite di�erentfrom the a
tual long-term behavior. To over
ome these problems, this arti
le investigatesin detail the RWP node distribution as a fun
tion of the mobility parameters.In fa
t, we 
onsider a generalized version of the RWP model. In this generalized model,a node may remain stati
 for the entire simulation time with a given probability. Hen
e,only a fra
tion of the nodes are expe
ted to move. Furthermore, we 
onsider the fa
t thatnodes are initially distributed a

ording to an arbitrary spatial distribution. Last, butnot least, we allow the pause time tp to be di�erent after ea
h movement period.The rest of this arti
le is organized as follows. Se
tion 2 outlines related work andmotivates in more detail our interest in the derivation of the RWP node distribution. Se
-tion 3 motivates and explains the introdu
tion of the generalized RWP model as des
ribedabove. We formally 
hara
terize this model as a sto
hasti
 pro
ess and dis
uss some ofits properties that are useful in the derivation of the node distribution. Furthermore, weshow that this distribution is the sum of three distin
t 
omponents: the stati
, pause,and mobility 
omponent. This separation enables us to understand the in
uen
e of themodel's parameters on the resulting long-term node distribution. Next, in Se
tion 4, westudy in detail the mobility 
omponent of the distribution, i.e., the 
omponent that re-sults when all nodes are 
ontinuously moving (tp=0, no stati
 nodes). We derive an exa
tequation for RWP movement on a line segment and an a

urate approximation for move-ment on a square area. In Se
tion 5, we 
hara
terize the stati
 and pause 
omponents andpresent the expression of the overall node distribution. In Se
tion 6, several simulationresults show that the approximation used in the derivation of the mobility 
omponent ona square is negligible in pra
ti
e. Finally, Se
tion 7 summarizes our 
ontributions.3
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2 Motivation and Related WorkDespite the popularity of the RWPmodel, an in-depth understanding of its behavior is stillla
king in the 
ommunity. Only re
ently some papers appeared that study its sto
hasti
properties and warn resear
hers of pitfalls that might o

ur when using this model (see[2, 5, 7, 8, 10, 28, 31, 34℄). Probably the �rst simulation{based studies of the spatial nodedistribution were made in [2℄ and [8℄. The fa
t that the long-term node distribution isdi�erent from the initial uniform distribution, 
alls into question the representativeness ofmany simulation results in the literature. Typi
al settings for a simulation-based analysisof ad ho
 networks are the following: a few tenths or a hundred of nodes are distributeduniformly at random in a re
tangular region; then, they start moving a

ording to theRWP model. The behavior of the mobile network is observed for a number of time steps(where one step often 
orresponds to one se
ond) in the order of, at most, one thousand.Su
h settings have been used, for instan
e, in the evaluation of routing ([11,12,18,20,21,32℄), multi
ast [27℄, and energy-
onserving [33℄ proto
ols. Given the typi
al values of themobility parameters used in the simulations, it follows that nodes in the above des
ribeds
enario perform in general only a very limited number of movement periods during thesimulation time. These are in general not enough to rea
h the \steady state" of thenetwork. In other words, observing the network for relatively few steps after the initialnode positioning is not representative for the a
tual long-term behavior of the system.The la
k of a

ura
y of the methodology whi
h is 
urrently used to simulate ad ho
networks has also been outlined in a re
ent paper [34℄ from a di�erent perspe
tive. Theauthors show that the average of the nodes' speed de
reases over time and 
onvergesto a value �v that is stri
tly less than the initial average speed vmin+vmax2 (unless vmin =vmax = v > 0). Furthermore, setting vmin = 0 (as it is done in many simulations of adho
 networks [11, 12, 20, 27, 33℄) is parti
ularly 
riti
al, sin
e in this 
ase �v is arbitrarily
lose to zero, and the mobile system will eventually 
onverge to an almost stati
 one.The authors perform several experiments to support their argumentation, showing thatthe performan
e of 
ommonly used routing algorithms 
an vary 
onsiderably with time:typi
ally, after an initialization phase, whose duration depends on the values of vmin and4
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vmax, the performan
e of the proto
ol 
onverges toward the \steady-state performan
e."By giving the steady-state distribution of RWP nodes, this arti
le is a further step inthe dire
tion of improving the a

ura
y of ad ho
 network simulations.3 De�nition of Generalized RWP Movement3.1 ParametersThe following parameters des
ribe a simulation setup with generalized RWP mobility ina 
omplete manner:{ Size and shape of the deployment region Q{ Initial spatial node distribution finit(x){ Stati
 parameter ps, with 0 � ps � 1{ Probability density fun
tion fTp(tp) of the pause time{ Minimum speed and maximum speed: 0 < vmin � vmaxIn this arti
le, we 
onsider one and two-dimensional deployment regions of the formQ = [0; a℄� with �=1; 2. The initial node distribution finit(x) is used to pla
e nodes atthe beginning of a simulation in Q. In general, it is di�erent from a uniform distribution.The parameter ps represents the probability that a node remains stati
 for the entiresimulation time. This a

ounts for all situations in whi
h a fra
tion of the nodes are notable to move. This 
ould be the 
ase if sensors are spread from a moving vehi
le, and someof them remain entangled, say, in a bush or tree. This 
an also model a situation in whi
htwo types of nodes are used: one type is stati
, and another type is mobile. To a 
ertainextent, using a separate parameter to model stati
 nodes solves the pitfall des
ribed inSe
tion 2 that arises when vmin is set to 0 as done in many papers. The rationale forsetting vmin=0 was to allow some of the nodes to be \almost stati
." Unfortunately, thisimplies that all the network nodes will eventually be
ome almost stati
 [34℄, whi
h seemsto be quite unrealisti
 in many appli
ation s
enarios. In our extended RWP model, wethus expli
itly separate the stati
 and the mobile part of the network.5
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3.2 Sto
hasti
 Movement Pro
essConsidering the mobile part of the network, we note that ea
h RWP node moves inde-pendently of other nodes. Thus, all nodes have the same sto
hasti
 movement properties,and we 
an 
on
entrate our attention on a single RWP node: its asymptoti
 spatialdistribution is the same as the asymptoti
 distribution of all nodes.The movement periods of a node are indexed by the dis
rete-time parameter i, wherei 2 N , and the 
ontinuous time is denoted by t. The following random variables are used:{ Destination point Di in its �-dimensional 
oordinates{ Pause time Tp;i in the destination point Di{ Velo
ity Vi of the node during period iWith these de�nitions, the RWP model 
an be formally des
ribed as a sto
hasti
 pro
essfDi; Tp;i; Vigi2N = f(D1; Tp;1; V1); (D2; Tp;2; V2); : : :g ;where an additional waypoint D0 is needed for initialization. A sample of the pro
essis denoted by fdi; tp;i; vigi2N. One movement period i is 
ompletely de�ned by the setf(di�1;di); tp;i; vig.We always assume that the random waypoints Di are independently and identi
allydistributed (i.i.d.) at random using the uniform distribution over Q. Only the initialwaypoint D0 is determined by finit(x). The movement ve
tor from di�1 to di is denotedas traje
tory �i. The 
omplete movement tra
e of a node 
an thus be des
ribed by thesequen
e of these traje
tories, i.e.,f�1; �2; : : : ; �i; : : :g == fd0 � d1;d1 � d2; : : : ;di�1 � di; : : :g :As an alternative to the random variable Di, we also use the random variable Si denotingthe starting waypoint of the i-th movement period. Clearly, the starting point of the
urrent period is the destination point of the previous period, i.e., Si = Di�1. Again, weuse lower 
ase notation for samples of the pro
ess. When we just refer to a single randomvariable of the pro
ess, we omit the index i.6
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Regarding the pause times tp;i, the original RWP model for
es the nodes to have thesame pause time tp in ea
h waypoint during the entire movement pro
ess, i.e., Tp;i= tp=
onst: 8i. This is a rather unrealisti
 aspe
t of RWP mobility, whi
h is further ampli�edby the fa
t that the pause time is assumed to be the same for all the nodes in the network.In our generalized model, we assume that the pause time after ea
h movement period is
hosen from an arbitrary pdf fTp(tp) in the interval [tp;min; tp;max℄ with tp;min � 0 and awell-de�ned expe
ted value E[Tp℄. This distribution does not 
hange over time and isthe same for all the nodes in the network. Observe that our probabilisti
 homogeneityassumption is far less stringent than the equality assumption of the original model.In ea
h waypoint a node 
hooses a new speed Vi uniformly at random from the interval[vmin; vmax℄. We expli
itly request that vmin>0 to avoid deadlo
ks in the movement pro-
ess.3.3 Ergodi
ity PropertiesIn the derivation of the spatial distribution, the distan
es between two 
onse
utive way-points, i.e., the traje
tory lengths li=k�ik=kdi�di�1k, play an essential role. While therandom waypoints are independent by de�nition, these random lengths are not sto
has-ti
ally independent; in fa
t, the endpoint of one movement period is the starting point ofthe next movement period. Instead of 
onsidering a 
hained set of traje
tories, we 
on-sider a set of independent and disjoint traje
tories between pairs of independent randompoints, i.e., f� 01; � 02; : : : ; � 0i ; : : :g == fd00 � d01;d02 � d03; : : : ;d02i�12 � d02i�1; :::g ;where the points are uniformly distributed in Q. We 
laim that several statisti
al prop-erties are shared by this independent random point (IRP) pro
ess and the RWP pro
ess.Let us 
onsider a fun
tion z(�) of the two endpoints of a traje
tory (e.g., the traje
torylength z(�) = k�k), and let us denote the 
orresponding random variables in the RWPand IRP pro
ess by Z and Z 0, respe
tively. We want to show that E[Z℄ = E[Z 0℄. To doso, we 
onsider an in�nite RWP tra
e f�1; �2; : : :g and an in�nite IRP tra
e f� 01; � 02; : : :g.7
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By basi
 probability, we havelimk!1Pki=1 z(�i)k = E[Z℄ and limk!1Pki=1 z(� 0i )k = E[Z 0℄ :We now observe that �1; �3; �5; : : : do not share endpoints, thus they 
an be regarded astruly independent and behave like a set of movements in the IRP pro
ess. The same holdsfor �2; �4; �6; : : :. Hen
e we 
an writeE[Z℄ = limk!1Pk=2i=1 z(�2i�1)k + Pk=2i=1 z(�2i)k == E[Z 0℄2 + E[Z 0℄2 = E[Z 0℄ :If the fun
tion z(�) is the traje
tory length, the equality above implies that the ex-pe
ted value of the traje
tory length in the RWP and IRP pro
ess is the same, i.e.E[L℄ = E[L0℄, where L and L0 are random variables denoting the expe
ted traje
torylength in the RWP and IRP pro
ess, respe
tively. In the nomen
lature of sto
hasti
pro
esses, we have thus shown a \mean{ergodi
 property" of the RWP mobility model,i.e., statisti
ally there is no di�eren
e between sampling repeatedly from a single randomvariable L (or L0) or su

essively from the sequen
e fLigi2N. With respe
t to our prob-lem, this ergodi
 property implies, for instan
e, the following: in order to determine theexpe
ted value of the traje
tory length of a RWP mobile node, the analysis 
an be sim-pli�ed by 
onsidering only the distan
es between two points pla
ed uniformly at randomin Q. This allows us to use the following well-known results from the theory of geometri
probability (see [29℄): the expe
ted distan
e between two random points is E[L℄ = a=3when the points are uniformly distributed on the one-dimensional line segment [0; a℄, andit is E[L℄ = 0:521405 a when the points are uniformly distributed on the two-dimensionalsquare [0; a℄2.3.4 Components of the Node DistributionWith this formal des
ription of RWP movement, it 
an be easily seen that the resultingnode distribution fX(x) is 
omposed of three distin
t 
omponents: the stati
, pause, andmobility 
omponent: fX(x) = fs(x) + fp(x) + fm(x) : (1)8
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Although the three 
omponents of the distribution in (1) are denoted like pdfs, indeed theyrepresent likelihood fun
tions, i.e. their integral over Q does not ne
essarily 
orrespondsto one. The stati
 
omponent fs(x) a

ounts for the fa
t that a node 
an remain stati
for the entire network operational time. The pause 
omponent fp(x) a

ounts for thetime that a mobile node \rests" before starting a new movement period. Finally, themobility 
omponent fm(x) a

ounts for the time that a mobile node is a
tually moving.The following two se
tions 
ompute these 
omponents and �nally give an equation for theoverall fX(x).4 The Mobility Component of the Node DistributionIn this se
tion, we derive the asymptoti
ally stationary node distribution generated bythe generalized RWP model under two assumptions: (a) all nodes are mobile (ps = 0,no stati
 nodes) and (b) the pause time is set to zero, i.e., fTp(tp) = 1 if tp = 0, and0 otherwise. In other words, we 
ompute the (normalized) mobility 
omponent of theoverall distribution. We �rst 
onsider a one-dimensional RWP model on a line segmentand then extend our analysis to the two-dimensional 
ase on a square.4.1 One-Dimensional CaseA node moves a

ording to the RWP model on a line segment [0; a℄. The random variableX denotes the lo
ation of the node, where X 2 [0; a℄. Moreover, the random variables Sand D denote the starting and destination points of a movement period. These points arerandomly 
hosen from the uniform distribution on the line segment, i.e., their pdfs arefS(s) = fD(d) = 8<: 1a for 0 � s; d � a0 otherwise :In order to derive fX(x), let us �rst 
al
ulate the 
umulative distribution fun
tion(
df) FX(x)=P (X � x), whi
h denotes the probability that the mobile node is lo
atedwithin [0; x℄ at an arbitrary instant of time. For ea
h period i, ti denotes the durationof this period, and tx;i denotes the duration that the node spends within [0; x℄ during9
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 x  a0

S D

 t x,i
t i

(a) One movement period fromS to D
t1 t2 t3 tk

tx,1 tx,2 =0 tx,3 tx,k

t(b) Movement periods and 
orresponding time val-uesFigure 1: Illustration of RWP movement on line segment [0; a℄.this period (see Fig. 1). If the i-th movement traje
tory does not interse
t [0; x℄, wehave tx;i = 0. The 
orresponding random variables are denoted by Ti and Tx;i. We nowobserve the RWP pro
ess for a given number, say k, of movement periods. The time thatthe node spends in [0; x℄ during its entire movement pro
ess (Pki=1 tx;i) divided by thetotal movement time of the node (Pki=1 ti) 
onverges toward P (X � x) as the number ofmovement periods goes to in�nity:P (X � x) = limk!1Pki=1 tx;iPki=1 ti = E[Tx℄E[T ℄ :In ea
h period i, the node 
hooses uniformly at random a speed vi 2 [vmin; vmax℄. Letli = viti denote the traveled distan
e in period i. Similarly, let lx;i = vitx;i denote thetraveled distan
e within [0; x℄ during this period. The 
orresponding random variablesare denoted by V , L, and Lx, respe
tively. Sin
e V and L are independent randomvariables, and the same holds for V and Lx, we 
an write E[T ℄ = E �LV �= 
 � E[L℄ andE[Tx℄=E �LxV �=
 �E[Lx℄, for some 
onstant 
 that depends on the distribution of V . If Vis uniformly distributed in the interval [vmin; vmax℄, with vmin>0, we have 
= ln(vmax=vmin)vmax�vmin[5℄. Thus, it follows immediately thatP (X � x) = E[Lx℄E[L℄ :An important 
onsequen
e of this equation is that the asymptoti
 
df FX(x)=P (X �x) is independent of the speed 
hoi
e of the nodes. As mentioned above, we have E[L℄ =a=3 from the literature on sto
hasti
 geometry. Thus, we have redu
ed the problem of
al
ulating FX(x) to the problem of 
al
ulating E[Lx℄. In order to do so, let lx(s; d) denote10
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the value of the random variable Lx if S = s and D = d. We have:E[Lx℄ = Z as=0 Z ad=0 lx(s; d) fS(s) fD(d) dd ds :Be
ause of the symmetry of S and D, it is suÆ
ient to restri
t the 
al
ulation to periodswith s � d and then multiply the result by a fa
tor of 2. A ne
essary 
ondition forlx(s; d) 6= 0 is that ((s � x) ^ (d � x)) _ ((s � x) ^ (d > x)) is true. In the �rst 
ase wehave lx(s; d) = d� s, and in the se
ond 
ase we obtain lx(s; d) = x� s. This yieldsE[Lx℄ = 2a2 Z xs=0 Z xd=s(d� s) dd ds++ 2a2 Z xs=0 Z ad=x(x� s) dd ds = � 23a2 x3 + 1a x2 :The 
df of X is therefore given byFX(x) = E[Lx℄E[L℄ = � 2a3 x3 + 3a2 x2 ; for 0 � x � a :The probability of �nding a node between x1 and x2 is P (x1<X�x2) = FX(x2)�FX(x1).For example, a node is expe
ted to reside 68:75% of its movement time within �a4 ; 3a4 �, i.e.,within the 
entral 50% of the line segment. Using the de�nition of pdf fX(x) = �FX(x)�x ,we 
an 
on
lude with the following result.Theorem 1 The asymptoti
ally stationary pdf of the lo
ation X of a mobile node movingon a line segment [0; a℄ a

ording to the generalized RWP model with ps=0 and tp=0 isfX(x) = � 6a3 x2 + 6a2 xfor 0<x<a, and 0 otherwise. Furthermore, the asymptoti
 distribution is independent ofthe value of vmax and vmin>0 and the initial node distribution.This fun
tion represents the normalized version of the mobility 
omponent fm(x) ofthe overall node distribution (1). It is illustrated in Figure 2 and has been validated bysimulations. The probability of �nding a node 
lose to the border of the line segment goesto zero; the maximum value of fX(x) is at x = 0:5a, and the expe
ted lo
ation of a nodeis E[X℄ = 0:5 a. 11
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1.5

fX(x) . a

a/4 a/2 3a/4 a
xFigure 2: The asymptoti
 pdf fX(x) of RWP movement on a line segment4.2 Two-Dimensional CaseIn this se
tion we 
onsider the mobility 
omponent (ps= tp=0) of the spatial distributionin a two-dimensional unit square Q=[0; a℄2. For simpli
ity, we set a=1. The Cartesian
oordinates of a mobile node are X = (X; Y ), where X; Y 2 [0; 1℄. The asymptoti
 dis-tribution is denoted by fX(x) = fXY (x; y). The starting and destination points, denotedby D = (Dx; Dy) and S = (Sx; Sy), are uniformly distributed in Q. Spe
i�
 values of therandom variables are denoted by x; x; y;d; dx; dy, and so on.First of all, we note that the distribution in two dimensions 
annot be dire
tly derivedfrom the equation of the one-dimensional 
ase. In fa
t, the two-dimensional movement is
omposed of two dependent one-dimensional movements. The speed of a node proje
tedalong the x-axis is not 
onstant in general, and it is di�erent from the (non-
onstant)speed along the y-axis. As we have shown in [2℄ and [26℄, the simple produ
tfX(x) fX(y) = 36 xy (x� 1) (y � 1) ; for 0 � x; y � 1 ;12
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yields an approximation of the distribution fXY (x; y). Nevertheless, there is a non-negligible di�eren
e between fX(x)fX(y) and fXY (x; y), and this is why we are interestedin a better expression for the distribution.To derive the exa
t expression of fXY (x; y), we 
ould use the same te
hnique as inthe one dimensional 
ase, i.e., 
al
ulate FXY (x; y) = P ((X < x) ^ (Y < y)) and thendi�erentiate. However, the integration of the length lxy(s;d), i.e., the moved distan
ewithin the region de�ned by f(X; Y ) 2 Q j (X � x)^ (Y � y)g, over all possible startingand ending points is very diÆ
ult.For this reason, we use a di�erent te
hnique, whi
h dire
tly 
omputes a very goodapproximation of fXY (x; y). Let us assume for a moment that the node velo
ity is 
onstantduring the entire observation period, i.e., vmin= vmax= v > 0. With this assumption, we
an refer to the length and duration of a traje
tory inter
hangeably. LetP (x; y; Æ) = P �(x� Æ2<X�x + Æ2) ^ (y�Æ2<Y �y+ Æ2)�= Z x+Æ=2x�Æ=2 Z y+Æ=2y�Æ=2 fXY (x0; y0) dy0 dx0denote the probability that the node is in a square of length Æ 
entered in x = (x; y).This square is denoted as QÆxy in the following (see Fig. 3). If Æ is suÆ
iently small,fXY (x; y) 
an be 
onsidered to be 
onstant in QÆxy, and P (x; y; Æ) 
an be rewritten asP (x; y; Æ) = Æ2fXY (x; y). This yieldsfXY (x; y) = limÆ!0 P (x; y; Æ)Æ2 :We now 
onsider a �xed square QÆxy positioned at x=(x; y), and a traje
tory �(s;d)between s and d. As illustrated in Fig. 3, l denotes the total length of the traje
tory,i.e., l = l(s;d) = k�(s;d)k, and lÆxy the sub-length inside QÆxy, i.e., lÆxy = lÆxy(x; s;d; Æ) =k�(s;d) \QÆxyk. The 
orresponding random variables are denoted by L and LÆxy, respe
-tively. Clearly, lÆxy = 0 for all �(s;d) that do not interse
t QÆxy. As in the one-dimensional
ase, we 
an de�ne the expe
ted sub-length E[LÆxy℄ of a random traje
tory inside a givenQÆxy, and write P (x; y; Æ) = E[LÆxy℄E[L℄ : (2)
13
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Figure 3: Interse
tion of a traje
tory �(s;d) with QÆxy.The expe
ted traje
tory length E[L℄ of the RWP model is equivalent to the expe
teddistan
e between two independent points 
hosen uniformly at random in Q = [0; 1℄2,whi
h is E[L℄ = 0:521405 [29℄.The expe
ted value E[LÆxy℄ depends on the side Æ and on the position x of the smallsquare QÆxy, and 
an be 
al
ulated as the integral of lÆxy(x; s;d; Æ) over all possible startingand destination points in Q, i.e.,E[LÆxy℄ = Zs2Q Zd2Q lÆxy(x; s;d; Æ)fS(s) fD(d) dd ds ; (3)where fD(d)=fS(s)=1 for s;d 2 [0; 1℄2, and dd = ddxddy as well as ds = dsxdsy.Let us �rst 
onsider the inner integral for a �xed starting point s. Only destinationpoints d for whi
h the traje
tory �(s;d) interse
ts QÆxy 
ontribute to the integral. Thisis illustrated in Figure 4: for given s, only destination points inside the shaded polygonyield lÆxy 6= 0. Denoting this polygon by A(x; s; Æ), we 
an stateZd2Q lÆxy(x; s;d; Æ) dd = Zd2A(x;s;Æ) lÆxy(x; s;d; Æ) dd :Determining the exa
t expression of this integral seems to be very diÆ
ult. In the follow-ing, we 
onje
ture thatZd2A(x;s;Æ) lÆxy(x; s;d; Æ) dd � Zd2A(x;s;Æ) 
1Æ dd= 
1 Æ A(x; s; Æ) ;14
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Figure 4: The area of the shaded polygon, denoted as A(x; s; Æ), represents the probabilitythat a traje
tory that starts at s interse
ts QÆxy.for some 
onstant 
1> 0; i.e., independently of the 
oordinates of x, s, and d, the fun
-tion lÆxy(x; s;d; Æ) is a

urately approximated by 
1Æ. The validity of this 
onje
ture is
on�rmed by the experimental analysis reported in Se
tion 6. If the 
onje
ture holds, we
an rewrite (3) as E[LÆxy℄ � 
1Æ Zs2QA(x; s; Æ) ds :The area of the polygon A(x; s; Æ), divided by the total area (whi
h is 1), represents theprobability that a traje
tory interse
ts QÆxy under the 
ondition that this traje
tory startsat s. The probability that a random traje
tory interse
ts QÆxy 
an thus be 
al
ulated asthe integral of A(x; s; Æ) over all possible positions of s in the deployment region Q. Letthis probability be denoted byP� (x; y; Æ) = Zs2QA(x; s; Æ) ds: (4)Plugging the above two equations into (2), we 
an write:fXY (x; y) = limÆ!0 P (x; y; Æ)Æ2 � 
 � limÆ!0 P� (x; y; Æ)Æ :Up to a 
onstant 
 = 
1=E[L℄ > 0 and an approximation, we have redu
ed the originalproblem to the problem of determining the probability that a random traje
tory interse
tsQÆxy. Observe that it is not ne
essary to 
al
ulate the value of the 
onstant 
, sin
e it willbe absorbed by the multipli
ative 
onstant needed to normalize fXY (x; y).15
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Finding the exa
t expression of the area A(x; s; Æ) is not straightforward. The shape ofthe polygon depends on the positions s and x. For this reason, given the 
oordinate x, wedivide Q into a number of subareas, with the property that all the starting points in thesame subarea indu
e polygons with the same shape. This way, we 
an 
al
ulate the partialintegral independently on ea
h subarea, and obtain the overall integral as the sum of the
ontributes of all the subareas. Details on how A(x; s; Æ) and, 
onsequently, fXY (x; y) are
al
ulated 
an be found in the Appendix. In summary, we obtain the following result.Theorem 2 The asymptoti
ally stationary pdf of the lo
ation X = (X; Y ) of mobile nodesmoving in [0; 1℄2 a

ording to the generalized RWP model with ps = 0 and tp = 0 
an be
losely approximated byfXY (x; y) =
=

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

f �XY (x; y) 0 < x � 12 ; 0 < y � xf �XY (y; x) 0 < x � 12 ; x � y � 12f �XY (1� y; x) 0 < x � 12 ; 12 � y � 1� xf �XY (x; 1�y) 0 < x � 12 ; 1� x < y � 1f �XY (1�x; y) 12 � x < 1; 0 < y � 1� xf �XY (y; 1�x) 12 � x < 1; 1� x � y � 12f �XY (1�y; 1�x) 12 � x < 1; 12 � y � xf �XY (1�x; 1�y) 12 � x < 1; x � y < 10 otherwise
;

where f �XY is de�ned on Q� = f(x; y)2 [0; 1℄2 j (0 < x �0:5)^(0 < y � x)g, withf �XY (x; y) = 6y + 34 �1� 2x+ 2x2�� yy � 1 + y2(x� 1) x�+ 3y2 �(2x� 1)(y + 1) ln�1� xx �+ �1� 2x + 2x2 + y� ln�1� yy �� :
Again, fXY (x; y) 
orresponds to the normalized mobility 
omponent fm(x). Its plotand some 
ontour lines are shown in Figure 5. As in the one-dimensional 
ase, the expe
ted16
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Figure 5: Plot of the mobility 
omponent and 
ontour lines 
orresponding to the valuesfm(x; y) = 0.5, 1, 1.5 and 2.lo
ation of a node and the maximum of the density are in the middle of the region, atx = (0:5; 0:5). While the density in the middle is rotary symmetri
, the 
ontour linestoward the border be
ome more and more re
tangular. The probability of �nding a nodeat the borders of the region goes to zero. Note that, as in the one-dimensional 
ase, theasymptoti
 distribution of mobile nodes is independent of the initial node distribution.Furthermore, the proof that fX(x) in one-dimensional networks is independent of the
hoi
e of the node velo
ities 
an be generalized to the two-dimensional setting.5 Node Distribution of the Generalized RWP modelIn this se
tion, we �rst analyze the stati
 
omponent fs(x) and the pause 
omponentfp(x), then perform proper s
aling of the mobility 
omponent fm(x), and �nally show theequation of the overall distribution fX(x) = fs(x) + fp(x) + fm(x).The stati
 
omponent fs(x) 
an be determined in a straightforward manner from theinitial distribution by observing that a node remains stati
 with probability ps. Thus, wehave fs(x) = ps finit(x) ;independently of the time t at whi
h the node is observed.Let us now 
onsider a node that is not stati
. During its RWP movement, it alternatesbetween pause periods (lasting tp;i for the i-th period) and movement periods (lasting17
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ti). The pause periods 
ontribute to the pause 
omponent, and the movement periods
ontribute to the mobility 
omponent.For derivation of the pause 
omponent, we de�ne pp(t) as the probability that a nodeis pausing at time t. Sin
e the destination points are uniformly distributed in [0; 1℄�,we write fp(x; t) = (1� ps) pp(t)for x2 [0; 1℄�, and 0 otherwise. Sin
e we are interested in 
hara
terizing the asymptoti
density, we must determine the value of pp(t) for t!1. Assuming that vmin=vmax=v>0,the duration of a movement period depends only on the distan
e between the startingand destination waypoint, i.e., ti = liv . The total running time of the RWP pro
ess afterperiod k is given by kXi=1 �tp;i + 1v li� :The probability that a node is resting at a randomly 
hosen time instant therefore ispp = limk!1 Pki=1 tp;iPki=1 tp;i + 1v Pki=1 li = E[Tp℄E[Tp℄ + 1vE[L℄ ;where E[Tp℄ is the expe
ted value of the pause time distribution fTp(tp), and E[L℄ is thewell-known expe
ted traje
tory length.In order to �nally obtain the mobility 
omponent, the results on the node distributionof the previous se
tions must be s
aled, taking into a

ount the probability that a node isa
tually moving at an arbitrary time. Denoting by f 0m(x) the distribution of Theorem 1and 2, the mobility 
omponent is given byfm(x) = (1� ps)(1� pp) f 0m(x) :Knowing all three 
omponents, we are now ready to present the main result of thispaper.Theorem 3 The asymptoti
ally stationary pdf of the lo
ation X of nodes moving in Q=[0; 1℄�, with �=1; 2, a

ording to the generalized RWP model with 
onstant velo
ity v>0,is fX(x) = ps finit(x) + (1� ps) pp + (1� ps)(1� pp)f 0m(x)18
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for x2 [0; 1℄�, and 0 otherwise, where pp = �1 + E[L℄v E[Tp℄��1, with E[L℄ = 1=3 for � = 1and E[L℄ = 0:521405 for � = 2. The normalized mobility 
omponent f 0m(x) is de�ned inTheorem 1 (� = 1) and Theorem 2 (� = 2), respe
tively.Let us dis
uss this result, under the assumption that the pause time is �xed to anarbitrary value tp. If the initial node distribution finit(x) is uniform, the asymptoti
node distribution fX(x) is the sum of a uniform and a non-uniform 
omponent. As psand/or tp in
rease, the uniform 
omponent of the density be
omes predominant, andfX(x) 
an be approximated with the uniform distribution. Conversely, for small values ofps and/or tp, the non-uniform 
omponent dominates and generates a signi�
ant \bordere�e
t." These observations are fully 
oherent with the statisti
al analysis presented in[8℄. The in
uen
e of the velo
ity v on fX(x) is less evident: in general, higher velo
ities
ause a shorter movement duration and, 
onsequently, a \more uniform" distribution. Forextreme values of tp the e�e
t of the velo
ity is negligible. If tp = 0, the pause 
omponentof the density will be zero (regardless of the value of v) and the density fX(x) will beindependent of v. Similarly, if tp is very large, then pp � 1 regardless of the value of v.We remark that Theorem 3 has pra
ti
al relevan
e for simulation-based studies ofRWP mobile networks. So far, the only way to investigate relevant asymptoti
 propertiesof mobile networks was to simulate the nodes movement for a very large number of steps.This is done at the expense of 
onsiderable 
omputational resour
es. As a 
onsequen
e,the number of nodes in the mobile system is usually kept small (it is rarely above 100in existing experimental results). As wireless ad ho
 networks will be
ome reality ina near future, their size is likely to grow to as mu
h as thousands of nodes. Hen
e,the simulation of large mobile networks, in whi
h the s
alability of the proto
ols 
an be
arefully investigated, will be
ome an issue. We believe that our 
hara
terization of thenode spatial distribution of mobile networks is of great help in the simulation of largemobile ad ho
 networks.The generation of nodes' positions 
an be done as follows. A node remains stati
during the entire simulation with probability ps. If the node is non{mobile, its positionis 
hosen a

ording to the initial distribution finit(x). If the node is mobile, its position19
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is 
hosen a

ording to the equation of Theorem 3, where ps is set to zero1 and the otherparameters re
e
t the settings of the RWP mobility parameters in the simulated s
enario.It 
an be easily seen that this pro
edure puts the system immediately into its asymptoti
\steady state," thus avoiding the large number of movement periods needed to make thesystem 
onverge to this state.6 Experimental EvaluationIn this se
tion we report the results of the simulation-based experiments that we haveperformed to evaluate how well the equations for the two-dimensional node distributionapproximate the a
tual distribution.Our simulation tool takes as input the mobility parameters of the RWP model: theprobability ps, the pause time tp , and the parameters of the node velo
ity (vmin; vmax). Inthe remainder, time measures are expressed as the number of time steps, and length andvelo
ity measures are normalized with respe
t to the unit square. A number of n = 1000nodes are distributed uniformly and independently at random in [0; 1℄2; then, they startmoving a

ording to the RWP mobility model. Later on, we will show simulation resultswhere the initial node distribution is not uniform, and the pause time and velo
ity arerandomly 
hosen.In order to re
ord the node spatial distribution, we divide [0; 1℄2 into a number ofsquare 
ells of the same size, arranged in a grid fashion. In our experiments, we use a gridof 31�31 
ells with side lengths 1=31. After t=10000 time steps, the number of nodes inea
h 
ell is re
orded. These numbers are a

umulated over 10000 simulation runs, and arereported as the result of the experiment. These values for the number of mobility stepsand simulation runs are 
hosen be
ause they are a good 
ompromise between statisti
ala

ura
y and running time. If the theoreti
al analysis is a

urate, the normalized plotobtained by using these data should 
losely resemble that obtained by our equation.In the �rst series of experiments, we 
onsider a s
enario with mobile nodes only and1Sin
e stati
 nodes are 
onsidered separately in the position generation pro
ess, the stati
 
omponentof the density f(x) must be set to 0. 20



www.manaraa.com

10

20

30

10

20

30

0

0.5

1

1.5

2

5 10 15 20 25 30

5

10

15

20

25

30

Figure 6: Node distribution obtained by simulation for ps= tp=0 (mobility 
omponent).The z-axis reports the number of times a node is \observed" in the given 
ell (afternormalization). The 
ontour lines on the right 
orrespond to the values fXY (x; y) = 0.5,1, 1.5, and 2.
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utFigure 9: Experiment 3: Node distribution for ps = tp = 0 (mobility 
omponent), withvelo
ity 
hosen uniformly at random in the interval [0:005; 0:015℄.zero pause time. Our goal is to evaluate the impa
t of the approximation that we madein the derivation of the two-dimensional mobility 
omponent (Theorem 2). We set ps=0,tp=0, and vmin=vmax=v=0:01. The normalized plot of the re
orded node distributionover (x; y) and the 
orresponding 
ontour lines are reported in Figure 6. They show avery 
lose resemblan
e with the plots of the theoreti
ally derived fun
tion of fm(x; y) inFigure 5. This resemblan
e is further eviden
ed by the plots shown in Figure 7. Thesegraphi
s report two 
uts parallel to the x-axis (for y=0:5 and y�0:21) and the diagonal
ut of the 3D plot. Experimental data are represented by bold points, and the lines showthe theoreti
al 
urves. The result of this experiment shows that the approximation thatwe made in the derivation of fm(x; y) does not signi�
antly a�e
t the quality of the result.In a se
ond experiment, we evaluate the rate of 
onvergen
e of the node distribution tothe asymptoti
 distribution. Sin
e the mobility 
omponent of the distribution is the most
riti
al from this point of view, we set ps= tp=0. The diagonal 
ut of the node distributionresulting after t= 100, 500, and 1000 steps with v= 0:01 is shown in Figure 8. As seenfrom the �gure, t = 500 steps seem to be suÆ
ient to a
hieve the asymptoti
 distribution.The expe
ted number of movement periods during t time steps is given by tE[T ℄ = t vE[L℄ =t�0:010:521405 . Thus, as a rule of thumb, we 
an say that about 500�0:010:521405 � 10 movement periodsare on average needed to a
hieve the stationary distribution.In the third experiment, we validate that the normalized mobility 
omponent of thedistribution is a
tually independent of the 
hoi
e of the velo
ity. To this purpose, we setps= tp=0 as in the previous experiment, while the node velo
ities are 
hosen uniformly
22
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utFigure 11: Experiment 4.2: Node distribution for ps=0:3, tp=300, and v=0:01.at random in the interval [0:005; 0:015℄. The results of this experiment are reported inFigure 9. As it 
an be seen, the e�e
t of allowing randomly 
hosen values for the nodevelo
ities is negligible. This fa
t 
on�rms that Theorem 2 holds also when the velo
ity is
hosen uniformly at random in the interval [vmin; vmax℄.In the fourth series of experiments, we study how well our equation of the 
ompletenode distribution (Theorem 3) �ts the experimental data in two hybrid s
enarios. In a�rst s
enario, we set ps = 0:1, tp = 100, and v = 0:01; and in a se
ond s
enario, we setps=0:3, tp=300, and v=0:01. The 
omplete node distribution is now 
omposed of twouniform distributions (the stati
 and pause 
omponent) and a non-uniform s
aled mobility
omponent. In the �rst s
enario, we have fX(x) = 0:1 + 0:9 � 0:6573 + 0:3084 � fm(x) =0:692+0:308 �fm(x). The se
ond s
enario yields f(x) = 0:896+0:104 �fm(x). The resultsof the experiments are reported in Figures 10 and 11. As it 
an be seen, our equation isa very good �t of the experimental data in both s
enarios.Finally, we verify the quality of our equation for the generalized RWP model with non-uniform initial distribution and random pause times. For this purpose, we extended the23
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ity 
hosenuniformly at random in [0:005; 0:015℄.simulator by allowing nodes to be initially distributed uniformly at random in the subarea[0; 0:5℄2. Further, the pause time and the velo
ity are 
hosen uniformly at random betweena minimum and maximum value for ea
h movement. We simulate the following s
enario:nodes initially distributed uniformly at random in [0; 0:5℄2, ps = 0:2, the pause time is
hosen uniformly at random in the interval [100; 300℄ at ea
h movement (independentlyfor ea
h node), and v is taken from [0:005; 0:015℄. The result of the experiment is shownin Figure 12. Also in this 
ase, the equation �ts the experimental data very well.7 Con
lusionsThe theoreti
al results presented in this paper have signi�
ant pra
ti
al relevan
e. First,they allow us to improve the simulation methodology used in the ad ho
 networking re-sear
h 
ommunity. By initially distributing the nodes a

ording to our distribution fX(x),we put the network in its asymptoti
 \steady state," thus avoiding the number of move-ment periods needed to make the system 
onverge to this state. Thus, the 
omputationalresour
es 
an be used to investigate the behavior of the network after the steady statehas been rea
hed, rather than wasted in investigating the startup phase. From this pointof view, our work 
an be seen as 
omplementary to a re
ent paper by Yoon et al. [34℄,paving the way towards more a

urate simulation of ad ho
 networks.Se
ond, our results serve as a starting point for the analyti
al investigation of ad ho
24
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networks with RWP mobility. Given the distribution fX(x) derived in this paper, theaverage route length and the 
onne
tivity (just to 
ite two well studied properties in thestati
 
ase) in presen
e of RWP mobility 
an be analyzed in a theoreti
al framework.For example, we 
an now 
ompute the simulation parameters needed to obtain an almostsurely 
onne
ted ad ho
 network with RWP mobility. By setting these parameters a

ord-ingly, a resear
her 
an be sure that the simulated RWP network is 
onne
ted during mostof the simulation time. A �rst step forward in this dire
tion was made in [4℄. Note that,without an expli
it expression for fX(x), it is impossible to 
ompare simulation resultsbased on RWP mobility with analyti
al results, be
ause the latter are typi
ally based onuniform node distribution.Last but not least, the derivation of fX(x) gives us a better understanding on howthe RWP model behaves and why it behaves like this. For example, we have veri�ed thatthe asymptoti
ally stationary normalized mobility 
omponent is independent of the speed
hoi
e of the nodes and their initial spatial distribution.A Cal
ulating fXYThe division of the unit square into subareas for a given position of QÆxy is reported inFigure 13. First, we divide Q = [0; 1℄2 into four quadrants Q1; : : : ; Q4. Quadrants areseparated from ea
h other by strips of width Æ, obtained by extending the sides of QÆxyto the borders. Ea
h quadrant is then further divided into three sub-quadrants, obtainedby extending the lines that 
onne
t the opposite 
orner of the unit square to oppositeverti
es of QÆxy. We then have a total of 16 regions. For 
larity, only the division of the�rst quadrant is shown in Fig. 13. We observe that the area of some of these regionsapproa
hes 0 as Æ ! 0, hen
e their 
ontribution 
an be omitted when 
al
ulating thevalue of the overall integral. This is the 
ase of the area of the four strips of width Æ, aswell as of the area of Q12 and of the 
orresponding regions in the other quadrants. Thus,we 
an rewrite the overall integral of (4) asZZQA(x; s; Æ) ds = Xi=1;:::;4 ZZQi A(x; s; Æ) ds ;25
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Figure 13: Division of unit square into quadrants and sub-quadrants.where ea
h of the summands 
an be 
omputed byZZQi A(x; s; Æ) ds =ZZQi1 A(x; s; Æ) ds+ ZZQi3 A(x; s; Æ) ds : (5)In the remaining derivation of fXY (x; y), we make use of symmetries in the problem.Sin
e we are 
onsidering a square deployment region, it is suÆ
ient to know the nodedistribution in the subregion Q� = f(x; y) 2 [0; 1℄2 j (0 < x � 0:5)^(0 < y � x)g. Thedistribution in the other subregions of Q is obtained by proper variable substitutions. Wedenote the distribution in Q� by f �XY (x; y).Under the assumption that QÆxy is lo
ated in Q�, let us detail the 
al
ulation of onesummand in (5). In general, the area of a 
onvex polygon de�ned by n points x1 =(x1; y1); : : : ;xn = (xn; yn) 
an be 
al
ulated by A = 12((x1�x2)(y1+y2) + (x2�x3)(y2+y3)+ : : : + (xn � x1)(yn + y1)), where the n points must be ordered 
ounter
lo
kwise. Let

26
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Figure 14: Area A(x; s; Æ) if s is in Q11.us assume that s is in Q11. We have (see Fig. 14)0BBBBBBBBB�
x1 y1x2 y2x3 y3x4 y4x5 y5

1CCCCCCCCCA = 0BBBBBBBBB�
x� Æ2 y + Æ2x� Æ2 y � Æ2(x�Æ=2�sx)sysy�y+Æ=2 + sx 0(x+Æ=2�sx)sysy�y�Æ=2 + sx 0x+ Æ2 y + Æ2

1CCCCCCCCCA ;
whi
h yields A(x; s; Æ) == 12 Æ �Æ � x+ sx + y � sy + 4s2y(sx�x+y�sy)(2y�2sy+Æ)(2sy�2y+Æ)� :This area must be integrated over Q11. Observing that the line that delimits the lowerside of Q11 has equation y(x) = m11x+q11, where m11 = 2y+Æ2x�2+Æ and q11 = �m11, we writeZZQ11 A(x; s; Æ) ds = x� Æ2Z0 1Zm11sx+q11 A(x; sx; sy; Æ) dsy dsx : (6)

27



www.manaraa.com

Taking the limit of (6), divided by Æ, as Æ goes to 0, yieldslimÆ!0 (6)Æ = 14 xy"x2 + x(6y � 7) + 2(3� 4y + y2)(x� 1)(y � 1)+ 2(x + y) ln��1x � 1��1y � 1��#This term gives the 
ontribution of Q11 to the node density. The derivation of the partialintegrals referring to the other regions 
an be obtained by similar geometri
 arguments,and is not reported for the sake of brevity. The overall density 
an be 
al
ulated bysumming the 
ontribution of all the regions.The resulting expression, whi
h we denote f �XY (x; y), must be normalized in su
h a waythat RQ� f �XY (x; y)dxdy = 18 , sin
e the area of Q� is 18 . After long and tedious 
al
ulation,whi
h is not reported, we have obtained the expression reported in the statement ofTheorem 2.A
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