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Abstract

The random waypoint model is a commonly used mobility model in the sim-
ulation of ad hoc networks. It is known that the spatial distribution of network
nodes moving according to this model is in general non-uniform. However, a closed-
form expression of this distribution and an in-depth investigation is still missing.
This fact impairs the accuracy of the current simulation methodology of ad hoc
networks and makes it impossible to relate simulation based performance results to
corresponding analytical results.

To overcome these problems, we present a detailed analytical study of the spa-
tial node distribution generated by random waypoint mobility. More specifically,
we consider a generalization of the model, in which the pause time of the mobile
nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain
static for the entire simulation time. We show that the structure of the result-
ing distribution is the weighted sum of three independent components: the static,
pause, and mobility component. This division enables us to understand how the

model’s parameters influence the distribution. We derive an exact equation of the
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asymptotically stationary distribution for movement on a line segment and an ac-
curate approximation for a square area. The good quality of this approximation
is validated through simulations using various settings of the mobility parameters.
In summary, this article gives a fundamental understanding of the behavior of the
random waypoint model.

Index Terms: Mobility modeling, random waypoint model, mobile ad hoc

networking, simulation

1 Introduction

Performance analysis in presence of mobility is of major importance in the design of wire-
less communication and computer networks. Since real movement patterns are difficult to
obtain, a common approach is to use synthetic mobility models, which resemble to some
extent the behavior of real “mobile entities” (see [2,10,13,15,19,22,36]). Based on such
models, basic conclusions with respect to critical network parameters can be provided.

The most commonly used mobility model in the ad hoc networking research community
is the random waypoint (RWP) model [21]. It is implemented in the simulation tools NS2
[25] and GloMoSim [35] and used in many evaluations of network algorithms and protocols
(see [9,11,18]). In this stochastic model, each node of the network chooses uniformly at
random a destination point (“waypoint”) in a rectangular deployment region (). A node
moves to this destination with a velocity v chosen uniformly at random in the interval
[Umins Umaz]. When it reaches the destination, it remains static for a predefined pause time
t,, and then starts moving again according to the same rule.

It has been observed in [2,6-8] and [28] that the spatial distribution of nodes moving
according to the RWP model is non-uniform. Although the initial node positioning is
typically taken from a uniform random distribution, the mobility model changes this
distribution during the simulation. This effect, known as border effect [2], occurs because
nodes tend to cross the center of  with a relatively high frequency. For a long running
time of the movement process, the stochastic distribution of the nodes converges toward

an asymptotically stationary distribution with the maximum node density in the middle

of Q.
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The non-uniformity of the RWP node distribution has important practical conse-
quences. First, it reduces the applicability of existing analytical results concerning ad hoc
networks, which are typically based on the uniformity assumption. For example, theoret-
ical results with respect to routing ([1,24]), capacity ([14,17]), connectivity ([3,16,30]),
and minimum power issues cannot be applied directly in a mobile scenario that employs
the RWP model. Second, the non-uniform distribution implies that the representative-
ness of the huge amount of simulation results obtained by using the RWP model could be
impaired. This is because the short-term behavior of the RWP model is quite different
from the actual long-term behavior. To overcome these problems, this article investigates
in detail the RWP node distribution as a function of the mobility parameters.

In fact, we consider a generalized version of the RWP model. In this generalized model,
a node may remain static for the entire simulation time with a given probability. Hence,
only a fraction of the nodes are expected to move. Furthermore, we consider the fact that
nodes are initially distributed according to an arbitrary spatial distribution. Last, but
not least, we allow the pause time ¢, to be different after each movement period.

The rest of this article is organized as follows. Section 2 outlines related work and
motivates in more detail our interest in the derivation of the RWP node distribution. Sec-
tion 3 motivates and explains the introduction of the generalized RWP model as described
above. We formally characterize this model as a stochastic process and discuss some of
its properties that are useful in the derivation of the node distribution. Furthermore, we
show that this distribution is the sum of three distinct components: the static, pause,
and mobility component. This separation enables us to understand the influence of the
model’s parameters on the resulting long-term node distribution. Next, in Section 4, we
study in detail the mobility component of the distribution, i.e., the component that re-
sults when all nodes are continuously moving (¢, =0, no static nodes). We derive an exact
equation for RWP movement on a line segment and an accurate approximation for move-
ment on a square area. In Section 5, we characterize the static and pause components and
present the expression of the overall node distribution. In Section 6, several simulation
results show that the approximation used in the derivation of the mobility component on

a square is negligible in practice. Finally, Section 7 summarizes our contributions.
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2 Motivation and Related Work

Despite the popularity of the RWP model, an in-depth understanding of its behavior is still
lacking in the community. Only recently some papers appeared that study its stochastic
properties and warn researchers of pitfalls that might occur when using this model (see
[2,5,7,8,10,28,31,34]). Probably the first simulation based studies of the spatial node
distribution were made in [2] and [8]. The fact that the long-term node distribution is
different from the initial uniform distribution, calls into question the representativeness of
many simulation results in the literature. Typical settings for a simulation-based analysis
of ad hoc networks are the following: a few tenths or a hundred of nodes are distributed
uniformly at random in a rectangular region; then, they start moving according to the
RWP model. The behavior of the mobile network is observed for a number of time steps
(where one step often corresponds to one second) in the order of, at most, one thousand.
Such settings have been used, for instance, in the evaluation of routing ([11,12,18,20,21,
32]), multicast [27], and energy-conserving [33] protocols. Given the typical values of the
mobility parameters used in the simulations, it follows that nodes in the above described
scenario perform in general only a very limited number of movement periods during the
simulation time. These are in general not enough to reach the “steady state” of the
network. In other words, observing the network for relatively few steps after the initial
node positioning is not representative for the actual long-term behavior of the system.
The lack of accuracy of the methodology which is currently used to simulate ad hoc
networks has also been outlined in a recent paper [34] from a different perspective. The
authors show that the average of the nodes’ speed decreases over time and converges
to a value v that is strictly less than the initial average speed ”m”# (unless vpin =
Umaz = v > 0). Furthermore, setting v,,;, = 0 (as it is done in many simulations of ad
hoc networks [11,12,20,27,33]) is particularly critical, since in this case v is arbitrarily
close to zero, and the mobile system will eventually converge to an almost static one.
The authors perform several experiments to support their argumentation, showing that
the performance of commonly used routing algorithms can vary considerably with time:

typically, after an initialization phase, whose duration depends on the values of v,,;, and
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Umaz, the performance of the protocol converges toward the “steady-state performance.”
By giving the steady-state distribution of RWP nodes, this article is a further step in

the direction of improving the accuracy of ad hoc network simulations.

3 Definition of Generalized RWP Movement

3.1 Parameters

The following parameters describe a simulation setup with generalized RWP mobility in

a complete manner:

— Size and shape of the deployment region @
Initial spatial node distribution f,;;(x)
— Static parameter p,, with 0 < p, <1
Probability density function fy, (¢,) of the pause time

— Minimum speed and maximum speed: 0 < U0 < Vmaz

In this article, we consider one and two-dimensional deployment regions of the form
Q = [0,a]* with a=1,2. The initial node distribution f;,;;(x) is used to place nodes at
the beginning of a simulation in ). In general, it is different from a uniform distribution.

The parameter p, represents the probability that a node remains static for the entire
simulation time. This accounts for all situations in which a fraction of the nodes are not
able to move. This could be the case if sensors are spread from a moving vehicle, and some
of them remain entangled, say, in a bush or tree. This can also model a situation in which
two types of nodes are used: one type is static, and another type is mobile. To a certain
extent, using a separate parameter to model static nodes solves the pitfall described in
Section 2 that arises when v,,;, is set to 0 as done in many papers. The rationale for
setting v,,;, =0 was to allow some of the nodes to be “almost static.” Unfortunately, this
implies that all the network nodes will eventually become almost static [34], which seems
to be quite unrealistic in many application scenarios. In our extended RWP model, we

thus explicitly.separate thestatic and the mobile part of the network.
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3.2 Stochastic Movement Process

Considering the mobile part of the network, we note that each RWP node moves inde-
pendently of other nodes. Thus, all nodes have the same stochastic movement properties,
and we can concentrate our attention on a single RWP node: its asymptotic spatial
distribution is the same as the asymptotic distribution of all nodes.

The movement periods of a node are indexed by the discrete-time parameter 7, where

1 € N, and the continuous time is denoted by ¢. The following random variables are used:

Destination point D; in its a-dimensional coordinates
— Pause time 7T}, ; in the destination point D;

Velocity V; of the node during period

With these definitions, the RWP model can be formally described as a stochastic process
{Dia Tp,ia ‘/;}iEN - {(Dla Tp,la ‘/1)7 (DQa Tp,?a ‘/2)7 ce } )

where an additional waypoint Dy is needed for initialization. A sample of the process
is denoted by {d;,t,;,v;}ien. One movement period ¢ is completely defined by the set
{(di—v, dy), tpi, vi}

We always assume that the random waypoints D; are independently and identically
distributed (i.i.d.) at random using the uniform distribution over ). Only the initial
waypoint Dy is determined by f,;(x). The movement vector from d; ; to d; is denoted
as trajectory ;. The complete movement trace of a node can thus be described by the

sequence of these trajectories, i.e.,

{7—1;7—2;---;7—1';---}:

:{do—dl,dl—d2,...,di,1—di,...}.

As an alternative to the random variable D;, we also use the random variable S; denoting
the starting waypoint of the i-th movement period. Clearly, the starting point of the
current period is the destination point of the previous period, i.e., S; = D; ;. Again, we
use lower case notation for samples of the process. When we just refer to a single random

vatiableof the processsweomit the index i.
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Regarding the pause times ¢, ;, the original RWP model forces the nodes to have the
same pause time 7, in each waypoint during the entire movement process, i.e., T, ;=t,=
const.¥i. This is a rather unrealistic aspect of RWP mobility, which is further amplified
by the fact that the pause time is assumed to be the same for all the nodes in the network.
In our generalized model, we assume that the pause time after each movement period is
chosen from an arbitrary pdf fr, (Z,) in the interval [t, in, tpmaez] With tp m > 0 and a
well-defined expected value E[T,]. This distribution does not change over time and is
the same for all the nodes in the network. Observe that our probabilistic homogeneity
assumption is far less stringent than the equality assumption of the original model.

In each waypoint a node chooses a new speed V; uniformly at random from the interval
[Vmins Umaz]. We explicitly request that v,,;, >0 to avoid deadlocks in the movement pro-

Ccess.

3.3 Ergodicity Properties

In the derivation of the spatial distribution, the distances between two consecutive way-
points, i.e., the trajectory lengths [;=||7;||=||d; —d;_1]||, play an essential role. While the
random waypoints are independent by definition, these random lengths are not stochas-
tically independent; in fact, the endpoint of one movement period is the starting point of
the next movement period. Instead of considering a chained set of trajectories, we con-
sider a set of independent and disjoint trajectories between pairs of independent random

points, 1.e.,

{T], Tgy oy Thye =

= {d6 - d’la d’2 - dg, RN dIQi—lQ - d'21;1a } )

where the points are uniformly distributed in ). We claim that several statistical prop-
erties are shared by this independent random point (IRP) process and the RWP process.

Let us consider a function z(7) of the two endpoints of a trajectory (e.g., the trajectory
length z(7) = ||7]|), and let us denote the corresponding random variables in the RWP
and IRP process by Z and 7', respectively. We want to show that EF[Z] = E[Z']. To do

sogwesconsider-ansinfinite, RWP trace {7, 7,...} and an infinite IRP trace {7, 75,...}.
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By basic probability, we have

M = E[Z] and lim M = E[Z'].

li
k—)rgo k k—o00 k
We now observe that 7, 73,75, ... do not share endpoints, thus they can be regarded as

truly independent and behave like a set of movements in the IRP process. The same holds

for m, 14, 76, . ... Hence we can write
k/2 L/
E[Z] = lim 2141 2(Toi-1) n Zlil 2(T2i) _
E[Z' )AL
- [2]+ [2] = E[7'].

If the function z(7) is the trajectory length, the equality above implies that the ex-
pected value of the trajectory length in the RWP and IRP process is the same, i.e.
E[L] = E[L'], where L and L' are random variables denoting the expected trajectory
length in the RWP and IRP process, respectively. In the nomenclature of stochastic
processes, we have thus shown a “mean—ergodic property” of the RWP mobility model,
i.e., statistically there is no difference between sampling repeatedly from a single random
variable L (or L') or successively from the sequence {L;};en. With respect to our prob-
lem, this ergodic property implies, for instance, the following: in order to determine the
expected value of the trajectory length of a RWP mobile node, the analysis can be sim-
plified by considering only the distances between two points placed uniformly at random
in . This allows us to use the following well-known results from the theory of geometric
probability (see [29]): the expected distance between two random points is E[L] = a/3
when the points are uniformly distributed on the one-dimensional line segment [0, a], and
it is E[L] = 0.521405 a when the points are uniformly distributed on the two-dimensional

square [0, a]?.

3.4 Components of the Node Distribution

With this formal description of RWP movement, it can be easily seen that the resulting
node distribution fx(x) is composed of three distinct components: the static, pause, and

mobility component:

fx(x) = fs(x) + fo(x) + (%) - (1)
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Although the three components of the distribution in (1) are denoted like pdfs, indeed they
represent likelihood functions, i.e. their integral over ) does not necessarily corresponds
to one. The static component f,(x) accounts for the fact that a node can remain static
for the entire network operational time. The pause component f,(x) accounts for the
time that a mobile node “rests” before starting a new movement period. Finally, the
mobility component f,,(x) accounts for the time that a mobile node is actually moving.
The following two sections compute these components and finally give an equation for the

overall fx(x).

4 The Mobility Component of the Node Distribution

In this section, we derive the asymptotically stationary node distribution generated by
the generalized RWP model under two assumptions: (a) all nodes are mobile (ps = 0,
no static nodes) and (b) the pause time is set to zero, i.e., fy,(t,) =1 if ¢, =0, and
0 otherwise. In other words, we compute the (normalized) mobility component of the
overall distribution. We first consider a one-dimensional RWP model on a line segment

and then extend our analysis to the two-dimensional case on a square.

4.1 One-Dimensional Case

A node moves according to the RWP model on a line segment [0, a]. The random variable
X denotes the location of the node, where X € [0, a]. Moreover, the random variables S
and D denote the starting and destination points of a movement period. These points are

randomly chosen from the uniform distribution on the line segment, i.e., their pdfs are

Q=

for0<s,d<a
fs(s) = fp(d) =

0 otherwise

In order to derive fx(z), let us first calculate the cumulative distribution function
(cdf) Fx(x)=P(X < z), which denotes the probability that the mobile node is located
within [0, z] at an arbitrary instant of time. For each period i, ¢; denotes the duration

of this period, and t,; denotes the duration that the node spends within [0, z] during
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0 X a t
(a) One movement period from (b) Movement periods and corresponding time val-
StoD ues

Figure 1: Illustration of RWP movement on line segment [0, a].

this period (see Fig. 1). If the i-th movement trajectory does not intersect [0,z], we
have t;; =0. The corresponding random variables are denoted by 7; and 7, ;. We now
observe the RWP process for a given number, say k, of movement periods. The time that
the node spends in [0, ] during its entire movement process (Zle t,i) divided by the
total movement time of the node (Zle t;) converges toward P(X < z) as the number of
movement periods goes to infinity:

k
P(X <z) = lim 2iz tei = E[L] )

In each period 7, the node chooses uniformly at random a speed v; € [Umin, Umaz]|- Let
li = vit; denote the traveled distance in period . Similarly, let I, ; = v;t,; denote the
traveled distance within [0, z] during this period. The corresponding random variables
are denoted by V, L, and L,, respectively. Since V' and L are independent random

variables, and the same holds for V and L,, we can write E[T]=E [£] =c- E[L] and

E[T,]=FE [%] =c- E[L,], for some constant ¢ that depends on the distribution of V. If V/

]n('Umaa: /Umin )

Umaz —VUmin

is uniformly distributed in the interval [v,,in, Umas|, With v, >0, we have ¢=

[5]. Thus, it follows immediately that

E[L,]
E[L]

P(X <x)=

An important consequence of this equation is that the asymptotic cdf Fx (z)=P(X <
x) is independent of the speed choice of the nodes. As mentioned above, we have E[L] =
a/3 from the literature on stochastic geometry. Thus, we have reduced the problem of

calculating Fix (@) tothe problem of calculating F[L,|. In order to do so, let [, (s, d) denote
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the value of the random variable L, if S = s and D = d. We have:

ElL,] = / ; /d ; L(s, d) fs(s) fo(d) ddds .

Because of the symmetry of S and D, it is sufficient to restrict the calculation to periods
with s < d and then multiply the result by a factor of 2. A necessary condition for
l.(s,d) # 0is that ((s <z)A(d<z))V ((s <z)A(d>x))is true. In the first case we

have [,(s,d) = d — s, and in the second case we obtain [,(s,d) = x — s. This yields

) T T
BlL) = & / /d (d— s)ddds +
/ s=0 =s

2 rore 2 1
+—2/ / (x—s)ddds = —— 2° + — 1" .
a s=0 J d=z 3a a

The cdf of X is therefore given by

ElL 2 , 3
FX(x)ZE[L]:_ﬁxg—i_?ﬂ’ for 0<z<a.

The probability of finding a node between x1 and 5 is P(x1 < X <xy) = Fx (22) — Fx (21).

For example, a node is expected to reside 68.75% of its movement time within } T %T“} ,l.e.,
within the central 50% of the line segment. Using the definition of pdf fx(z) = 8Fg$(m),

we can conclude with the following result.

Theorem 1 The asymptotically stationary pdf of the location X of a mobile node moving

on a line segment [0, a] according to the generalized RWP model with ps=0 and t,=0 is

6 , 6
fx(x):—gx —i-ﬁx

for 0<xz<a, and O otherwise. Furthermore, the asymptotic distribution is independent of

the value of Ve and vy, >0 and the initial node distribution.

This function represents the normalized version of the mobility component f,,(z) of
the overall node distribution (1). It is illustrated in Figure 2 and has been validated by
simulations. The probability of finding a node close to the border of the line segment goes
to zero; the maximum value of fy(x) is at x = 0.5a, and the expected location of a node

is E[X]=0.5a.
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Figure 2: The asymptotic pdf fx(z) of RWP movement on a line segment

4.2 Two-Dimensional Case

In this section we consider the mobility component (p;=t,=0) of the spatial distribution
in a two-dimensional unit square @ = [0, a]®. For simplicity, we set a=1. The Cartesian
coordinates of a mobile node are X = (X,Y), where X,Y € [0,1]. The asymptotic dis-
tribution is denoted by fx(x) = fxy(x,y). The starting and destination points, denoted
by D = (D,, D,) and S = (S,, S,), are uniformly distributed in (). Specific values of the
random variables are denoted by x, z,y,d, d,, d,, and so on.

First of all, we note that the distribution in two dimensions cannot be directly derived
from the equation of the one-dimensional case. In fact, the two-dimensional movement is
composed of two dependent one-dimensional movements. The speed of a node projected
along the z-axis is not constant in general, and it is different from the (non-constant)

speed along the y-axis. As we have shown in [2] and [26], the simple product

=36zy(r—1)(y—1),for0<z,y<1,
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yields an approximation of the distribution fyy(x,y). Nevertheless, there is a non-
negligible difference between fy(x) fx(y) and fyy(x,y), and this is why we are interested
in a better expression for the distribution.

To derive the exact expression of fyy(z,y), we could use the same technique as in
the one dimensional case, i.e., calculate Fxy(z,y) = P((X < xz) A (Y <y)) and then
differentiate. However, the integration of the length [,,(s,d), i.e., the moved distance
within the region defined by {(X,Y) € Q | (X <) A (Y < y)}, over all possible starting
and ending points is very difficult.

For this reason, we use a different technique, which directly computes a very good
approximation of fxy (x,y). Let us assume for a moment that the node velocity is constant
during the entire observation period, i.e., v,,in = Vmae = v > 0. With this assumption, we

can refer to the length and duration of a trajectory interchangeably. Let

P(z,y,6) = P((z—3<X<z+) A (y—i<Y <y+13))
m+6/2 y+4/2
/ / Ixv (zo, o) dyo dxg
x—0/2 d/2

denote the probability that the node is in a square of length ¢ centered in x = (x,y).
This square is denoted as Qiy in the following (see Fig. 3). If ¢ is sufficiently small,

fxv(x,y) can be considered to be constant in and P(z,y,d) can be rewritten as

wy?
P(x,y,8) = 6% fxy(x,y). This yields
P(z,y,0)
fxv(z,y) = %%T :

We now consider a fixed square ng positioned at x = (z,y), and a trajectory 7(s,d)
between s and d. As illustrated in Fig. 3, [ denotes the total length of the trajectory,
ie., l=I(s,d) = |[7(s,d)||, and I, the sub-length inside @ 19, =1,xs,d,0) =

zyr U oy

|7(s,d) N QJ,||. The corresponding random variables are denoted by L and L, , respec-

Yy’

tively. Clearly, lgy = 0 for all 7(s,d) that do not intersect sz- As in the one-dimensional

case, we can define the expected sub-length E[Lgy] of a random trajectory inside a given

)

2y and write

E[L),]

P(z,y,6) = BlL] (2)

13
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(0,1) (1,1)

(0,0) (1,0)
Figure 3: Intersection of a trajectory 7(s,d) with ng.

The expected trajectory length E[L] of the RWP model is equivalent to the expected
distance between two independent points chosen uniformly at random in Q = [0, 1]%
which is E[L] = 0.521405 [29)].

The expected value E[L) ] depends on the side § and on the position x of the small

5

square ()3, and can be calculated as the integral of liy(x, s,d, d) over all possible starting

and destination points in @), i.e.,

E[L],] :/EQ /deQ 19,(x,s,d,0)fs(s) fp(d) dd ds, (3)

where fp(d)=fs(s)=1 for s,d € [0,1]%, and dd = dd,dd, as well as ds = ds,ds,,.

Let us first consider the inner integral for a fixed starting point s. Only destination
points d for which the trajectory 7(s,d) intersects fﬁy contribute to the integral. This
is illustrated in Figure 4: for given s, only destination points inside the shaded polygon
yield lgy # 0. Denoting this polygon by A(x,s,d), we can state

/deQ 10,(x,8,d,0)dd = /dEA(x,S,é) 10,(x,s,d,0)dd .
Determining the exact expression of this integral seems to be very difficult. In the follow-

ing, we conjecture that

d
/ £ (x,s,d,06) dd
deA(x,s,0)

%

/ 615 dd
de A(x,s,0)

= ¢ 0 A(x,s,0),

14
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(0,1) (1,1)

()

(0,0) (1,0)

Figure 4: The area of the shaded polygon, denoted as A(x,s, ), represents the probability

that a trajectory that starts at s intersects Qfﬁy.

for some constant ¢; > 0; i.e., independently of the coordinates of x, s, and d, the func-
tion lgy(x,s,d, d) is accurately approximated by c;0. The validity of this conjecture is
confirmed by the experimental analysis reported in Section 6. If the conjecture holds, we

can rewrite (3) as

E[Liy] A 10 / A(x,s,0) ds.
SEQ
The area of the polygon A(x,s,d), divided by the total area (which is 1), represents the

probability that a trajectory intersects Qiy under the condition that this trajectory starts
at s. The probability that a random trajectory intersects fﬁy can thus be calculated as
the integral of A(x,s,d) over all possible positions of s in the deployment region (). Let
this probability be denoted by

Pz, y,0) = /EQA(X, ,0) ds. (4)

Plugging the above two equations into (2), we can write:

. P(x,y,9) . Pr(z,y,0)
For(a) =ty = iy S

Up to a constant ¢ = ¢;/FE[L] > 0 and an approximation, we have reduced the original
problem to the problem of determining the probability that a random trajectory intersects
‘iy. Observe that it is not necessary to calculate the value of the constant ¢, since it will

itive constant needed to normalize fyy (z,y).
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Finding the exact expression of the area A(x, s, ) is not straightforward. The shape of
the polygon depends on the positions s and x. For this reason, given the coordinate x, we
divide ) into a number of subareas, with the property that all the starting points in the
same subarea induce polygons with the same shape. This way, we can calculate the partial
integral independently on each subarea, and obtain the overall integral as the sum of the
contributes of all the subareas. Details on how A(x,s,d) and, consequently, fxy(x,y) are

calculated can be found in the Appendix. In summary, we obtain the following result.

Theorem 2 The asymptotically stationary pdf of the location X = (X,Y) of mobile nodes
moving in [0,1]* according to the generalized RWP model with ps=0 and t, =0 can be

closely approximated by

fxy(@,y) =
(f)*(y(:z:,y) 0<z<i 0<y<uz
fxv(y,z) O<z<iz<y<]
fxy(L =y, ) 0<z<i i<y<l-u
[y (@, 1-y) O<z<s, l-z<y<l
= 9\ fav(l-zy) l<z<1,0<y<l-z ,
fiv(y, 1—x) l<o<ll-z<y<!
fiy(l=y,1—2) L<a<l, i<y<u
fiv(l-z,1-y) 3<z<lz<y<l
LU otherwise

where [y is defined on Q* = {(x,y)€[0,1]*| (0 < z <0.5)A(0 <y < z)}, with

fyy(z,y) = 6 +§(1—2:L‘+2:L‘2) A v

v (2x1)(y+1)1n<1_“’>

x

+(12x+2m2+y)ln<1_7y)].

Again, fxy(z,y) corresponds to the normalized mobility component f,,(x). Its plot

hown in Figure 5. Asin the one-dimensional case, the expected
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Figure 5: Plot of the mobility component and contour lines corresponding to the values

fm(z,y) =0.5, 1, 1.5 and 2.

location of a node and the maximum of the density are in the middle of the region, at
x = (0.5,0.5). While the density in the middle is rotary symmetric, the contour lines
toward the border become more and more rectangular. The probability of finding a node
at the borders of the region goes to zero. Note that, as in the one-dimensional case, the
asymptotic distribution of mobile nodes is independent of the initial node distribution.
Furthermore, the proof that fx(x) in one-dimensional networks is independent of the

choice of the node velocities can be generalized to the two-dimensional setting.

5 Node Distribution of the Generalized RWP model

In this section, we first analyze the static component fy(x) and the pause component
fp(x), then perform proper scaling of the mobility component f,,(x), and finally show the
equation of the overall distribution fx(x) = fs(x) + f,(x) + fin(%).

The static component f,(x) can be determined in a straightforward manner from the
initial distribution by observing that a node remains static with probability p,. Thus, we

have
fs(x) = Ps finit(x) )
independently of the time ¢ at which the node is observed.

Let us now consider a node that is not static. During its RWP movement, it alternates

between pause periods (lasting t,,; for the i-th period) and movement periods (lasting
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t;). The pause periods contribute to the pause component, and the movement periods
contribute to the mobility component.

For derivation of the pause component, we define p,(t) as the probability that a node
is pausing at time t. Since the destination points are uniformly distributed in [0, 1]%,

we write
fo(x,1) = (1= ps) py(t)

for x € [0,1]%, and 0 otherwise. Since we are interested in characterizing the asymptotic
density, we must determine the value of p,(t) for t —oo. Assuming that v,,,i, = Ve =0 >0,

the duration of a movement period depends only on the distance between the starting
!

and destination waypoint, i.e., {; = . The total running time of the RWP process after

period k is given by
k
3 (t 1 z<>
: P, v 7 .
=1

The probability that a node is resting at a randomly chosen time instant therefore is

k
— lim Zi:l lp,i _ E[Tp]
ko0 Zf:l tp,i + % Zf:l l; E[TP] + %E[L]

Py

where E[T)] is the expected value of the pause time distribution fy,(¢,), and E[L] is the
well-known expected trajectory length.

In order to finally obtain the mobility component, the results on the node distribution
of the previous sections must be scaled, taking into account the probability that a node is
actually moving at an arbitrary time. Denoting by f,0(x) the distribution of Theorem 1

and 2, the mobility component is given by

(%) = (1= ps)(1 = pp) fm(x) .

Knowing all three components, we are now ready to present the main result of this

paper.

Theorem 3 The asymptotically stationary pdf of the location X of nodes moving in Q=
[0,1]%, with «=1,2, according to the generalized RWP model with constant velocity v >0,
18

fx=psufinic(X) + (1 — ps) pp + (1 — ps)(1 7pp)fr%(x)
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1
%[L} ) , with E[L] = 1/3 for a =1

for x € [0,1]%, and 0 otherwise, where p, = <1 + TET

v

and E[L] = 0.521405 for a = 2. The normalized mobility component f2(x) is defined in

Theorem 1 (o = 1) and Theorem 2 (o = 2), respectively.

Let us discuss this result, under the assumption that the pause time is fixed to an
arbitrary value t,. If the initial node distribution f,;(x) is uniform, the asymptotic
node distribution fx(x) is the sum of a uniform and a non-uniform component. As p,
and/or t, increase, the uniform component of the density becomes predominant, and
Jx(x) can be approximated with the uniform distribution. Conversely, for small values of
ps and/or t,, the non-uniform component dominates and generates a significant “border
effect.” These observations are fully coherent with the statistical analysis presented in
[8]. The influence of the velocity v on fx(x) is less evident: in general, higher velocities
cause a shorter movement duration and, consequently, a “more uniform” distribution. For
extreme values of 7, the effect of the velocity is negligible. If ¢, = 0, the pause component
of the density will be zero (regardless of the value of v) and the density fx(x) will be
independent of v. Similarly, if ¢, is very large, then p, ~ 1 regardless of the value of v.

We remark that Theorem 3 has practical relevance for simulation-based studies of
RWP mobile networks. So far, the only way to investigate relevant asymptotic properties
of mobile networks was to simulate the nodes movement for a very large number of steps.
This is done at the expense of considerable computational resources. As a consequence,
the number of nodes in the mobile system is usually kept small (it is rarely above 100
in existing experimental results). As wireless ad hoc networks will become reality in
a near future, their size is likely to grow to as much as thousands of nodes. Hence,
the simulation of large mobile networks, in which the scalability of the protocols can be
carefully investigated, will become an issue. We believe that our characterization of the
node spatial distribution of mobile networks is of great help in the simulation of large
mobile ad hoc networks.

The generation of nodes’ positions can be done as follows. A node remains static
during the entire simulation with probability p,. If the node is non—mobile, its position

is chosen according to the initial distribution f;,;(x). If the node is mobile, its position
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is chosen according to the equation of Theorem 3, where p, is set to zero' and the other
parameters reflect the settings of the RWP mobility parameters in the simulated scenario.
It can be easily seen that this procedure puts the system immediately into its asymptotic
“steady state,” thus avoiding the large number of movement periods needed to make the

system converge to this state.

6 Experimental Evaluation

In this section we report the results of the simulation-based experiments that we have
performed to evaluate how well the equations for the two-dimensional node distribution
approximate the actual distribution.

Our simulation tool takes as input the mobility parameters of the RWP model: the
probability ps, the pause time ¢, , and the parameters of the node velocity (Vmin, Umaz). In
the remainder, time measures are expressed as the number of time steps, and length and
velocity measures are normalized with respect to the unit square. A number of n = 1000
nodes are distributed uniformly and independently at random in [0, 1]%; then, they start
moving according to the RWP mobility model. Later on, we will show simulation results
where the initial node distribution is not uniform, and the pause time and velocity are
randomly chosen.

In order to record the node spatial distribution, we divide [0,1]? into a number of
square cells of the same size, arranged in a grid fashion. In our experiments, we use a grid
of 31 x 31 cells with side lengths 1/31. After ¢=10000 time steps, the number of nodes in
each cell is recorded. These numbers are accumulated over 10000 simulation runs, and are
reported as the result of the experiment. These values for the number of mobility steps
and simulation runs are chosen because they are a good compromise between statistical
accuracy and running time. If the theoretical analysis is accurate, the normalized plot
obtained by using these data should closely resemble that obtained by our equation.

In the first series of experiments, we consider a scenario with mobile nodes only and

1Since static nodes are considered separately in the position generation process, the static component

of the density f(x) must be set to 0.
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Figure 6: Node distribution obtained by simulation for p;=1t,=0 (mobility component).
The z-axis reports the number of times a node is “observed” in the given cell (after

normalization). The contour lines on the right correspond to the values fyy (z,y) =0.5,

1, 1.5, and 2.
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Figure 9: Experiment 3: Node distribution for p, = ¢, = 0 (mobility component), with

velocity chosen uniformly at random in the interval [0.005, 0.015].

zero pause time. Our goal is to evaluate the impact of the approximation that we made
in the derivation of the two-dimensional mobility component (Theorem 2). We set ps =0,
t, =0, and v,in = Vpay = v =0.01. The normalized plot of the recorded node distribution
over (x,y) and the corresponding contour lines are reported in Figure 6. They show a
very close resemblance with the plots of the theoretically derived function of f,,(z,y) in
Figure 5. This resemblance is further evidenced by the plots shown in Figure 7. These
graphics report two cuts parallel to the z-axis (for y=0.5 and y=~0.21) and the diagonal
cut of the 3D plot. Experimental data are represented by bold points, and the lines show
the theoretical curves. The result of this experiment shows that the approximation that
we made in the derivation of f,,(z,y) does not significantly affect the quality of the result.

In a second experiment, we evaluate the rate of convergence of the node distribution to
the asymptotic distribution. Since the mobility component of the distribution is the most
critical from this point of view, we set p;=t,=0. The diagonal cut of the node distribution
resulting after t =100, 500, and 1000 steps with v =0.01 is shown in Figure 8. As seen

from the figure, t = 500 steps seem to be sufficient to achieve the asymptotic distribution.

The expected number of movement periods during ¢ time steps is given by ﬁ = %
£0.01
0.521405

500-0.01
0.521405

Thus, as a rule of thumb, we can say that about ~ 10 movement periods
are on average needed to achieve the stationary distribution.

In the third experiment, we validate that the normalized mobility component of the
distribution is actually independent of the choice of the velocity. To this purpose, we set

ps =1, =0 as in the previous experiment, while the node velocities are chosen uniformly
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Figure 11: Experiment 4.2: Node distribution for p,=0.3, ¢,=300, and v=0.01.

at random in the interval [0.005,0.015]. The results of this experiment are reported in
Figure 9. As it can be seen, the effect of allowing randomly chosen values for the node
velocities is negligible. This fact confirms that Theorem 2 holds also when the velocity is
chosen uniformly at random in the interval [v,in, Vimae]-

In the fourth series of experiments, we study how well our equation of the complete
node distribution (Theorem 3) fits the experimental data in two hybrid scenarios. In a
first scenario, we set p; = 0.1, t, = 100, and v = 0.01; and in a second scenario, we set
ps =0.3, t, =300, and v=0.01. The complete node distribution is now composed of two

uniform distributions (the static and pause component) and a non-uniform scaled mobility

component. In the first scenario, we have fx(x) = 0.1+ 0.9-0.6573 4+ 0.3084 - f,,(x)
0.69240.308 - f,,,(x). The second scenario yields f(x) = 0.896+0.104- f,,(x). The results
of the experiments are reported in Figures 10 and 11. As it can be seen, our equation is
a very good fit of the experimental data in both scenarios.

Finally, we verify the quality of our equation for the generalized RWP model with non-

uniform initial distribution and random pause times. For this purpose, we extended the
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Figure 12: Experiment 5: Node distribution for p, = 0.2, fi,i; = 4 for Qo =[0,0.5]* and
0 otherwise, fr,(t,) = 1/200 for 100 < #, < 300 and 0 otherwise, and velocity chosen
uniformly at random in [0.005, 0.015].

simulator by allowing nodes to be initially distributed uniformly at random in the subarea
[0,0.5]2. Further, the pause time and the velocity are chosen uniformly at random between
a minimum and maximum value for each movement. We simulate the following scenario:
nodes initially distributed uniformly at random in [0,0.5]%, p, = 0.2, the pause time is
chosen uniformly at random in the interval [100,300] at each movement (independently
for each node), and v is taken from [0.005,0.015]. The result of the experiment is shown

in Figure 12. Also in this case, the equation fits the experimental data very well.

7 Conclusions

The theoretical results presented in this paper have significant practical relevance. First,
they allow us to improve the simulation methodology used in the ad hoc networking re-
search community. By initially distributing the nodes according to our distribution fx(x),
we put the network in its asymptotic “steady state,” thus avoiding the number of move-
ment periods needed to make the system converge to this state. Thus, the computational
resources can be used to investigate the behavior of the network after the steady state
has been reached, rather than wasted in investigating the startup phase. From this point
of view, our work can be seen as complementary to a recent paper by Yoon et al. [34],
paving the way towards more accurate simulation of ad hoc networks.

Second, our results serve as a starting point for the analytical investigation of ad hoc
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networks with RWP mobility. Given the distribution fx(x) derived in this paper, the
average route length and the connectivity (just to cite two well studied properties in the
static case) in presence of RWP mobility can be analyzed in a theoretical framework.
For example, we can now compute the simulation parameters needed to obtain an almost
surely connected ad hoc network with RWP mobility. By setting these parameters accord-
ingly, a researcher can be sure that the simulated RWP network is connected during most
of the simulation time. A first step forward in this direction was made in [4]. Note that,
without an explicit expression for fx(x), it is impossible to compare simulation results
based on RWP mobility with analytical results, because the latter are typically based on
uniform node distribution.

Last but not least, the derivation of fx(x) gives us a better understanding on how
the RWP model behaves and why it behaves like this. For example, we have verified that
the asymptotically stationary normalized mobility component is independent of the speed

choice of the nodes and their initial spatial distribution.

A Calculating fyy

The division of the unit square into subareas for a given position of Qiy is reported in
Figure 13. First, we divide Q = [0,1]? into four quadrants Qi,..., Q. Quadrants are
separated from each other by strips of width §, obtained by extending the sides of ng
to the borders. Each quadrant is then further divided into three sub-quadrants, obtained
by extending the lines that connect the opposite corner of the unit square to opposite
vertices of ng. We then have a total of 16 regions. For clarity, only the division of the
first quadrant is shown in Fig. 13. We observe that the area of some of these regions
approaches 0 as 6 — 0, hence their contribution can be omitted when calculating the
value of the overall integral. This is the case of the area of the four strips of width 4, as
well as of the area of (15 and of the corresponding regions in the other quadrants. Thus,

we can rewrite the overall integral of (4) as

fluwsi- X [ sen
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(0,1) (1,1)

(0,0) (1,0)

Figure 13: Division of unit square into quadrants and sub-quadrants.

where each of the summands can be computed by

//iA(x,s,é) ds =
//Q“A(x,s,é) ds—l—//QiBA(x,s,(S) ds (5)

In the remaining derivation of fxy(z,y), we make use of symmetries in the problem.
Since we are considering a square deployment region, it is sufficient to know the node
distribution in the subregion Q* = {(z,y) € [0,1*](0 < 2 <0.5)A(0 < y < z)}. The
distribution in the other subregions of () is obtained by proper variable substitutions. We
denote the distribution in Q* by f¥y (z,v).

Under the assumption that Qfﬂy is located in Q*, let us detail the calculation of one
summand in (5). In general, the area of a convex polygon defined by n points x; =
(Z1,41)s - -+ Xn = (Ty, Yn) can be calculated by A = $((x1—22) (11 +v2) + (22— 23) (y2+ys3)

+ ...+ (zn — 21)(yn + v1)), where the n points must be ordered counterclockwise. Let
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Figure 14: Area A(x,s,d) if s is in Qq;.

us assume that s is in Q1;. We have (see Fig. 14)

(xl yl\ ( T—3 y+%\
T2 Yo —% y—%
r3 Yz | = %'F% 0 ;
Ty Ya %7:27;%4'% 0

K$5 y5} :E—l-g y—l—%}

which yields

) (5 —amt Sty syt 45y (sa—THy—sy) )

2y—28y+0)(2sy —2y+0)

This area must be integrated over ();;. Observing that the line that delimits the lower

2y+4d

side of ()11 has equation y(x) = myz+ ¢, where my; = e

and ¢ = —my1, We write

[}
T—3 1

//“ A(x;s,0) ds = / / A(X, 81, 8y, 0) ds, dsy . (6)

0 mi1sz+qu1
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Taking the limit of (6), divided by 4, as d goes to 0, yields

1
lim@:—x
5—=0 & 4

22+ 1(6y —7) + 2(3 — 4y + y?)
(r = 1)(y—1)

+2t+ )] (1 1) (50”

This term gives the contribution of (017 to the node density. The derivation of the partial

integrals referring to the other regions can be obtained by similar geometric arguments,
and is not reported for the sake of brevity. The overall density can be calculated by
summing the contribution of all the regions.

The resulting expression, which we denote f%, (z,y), must be normalized in such a way
that fQ* fiy (x,y)dady = %, since the area of Q* is é. After long and tedious calculation,
which is not reported, we have obtained the expression reported in the statement of

Theorem 2.
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