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The Node Distribution of the Random WaypointMobility Model for Wireless Ad Ho Networks�Christian Bettstettery Giovanni Restaz Paolo Santiz
AbstratThe random waypoint model is a ommonly used mobility model in the sim-ulation of ad ho networks. It is known that the spatial distribution of networknodes moving aording to this model is in general non-uniform. However, a losed-form expression of this distribution and an in-depth investigation is still missing.This fat impairs the auray of the urrent simulation methodology of ad honetworks and makes it impossible to relate simulation{based performane results toorresponding analytial results.To overome these problems, we present a detailed analytial study of the spa-tial node distribution generated by random waypoint mobility. More spei�ally,we onsider a generalization of the model, in whih the pause time of the mobilenodes is hosen arbitrarily in eah waypoint and a fration of nodes may remainstati for the entire simulation time. We show that the struture of the result-ing distribution is the weighted sum of three independent omponents: the stati,pause, and mobility omponent. This division enables us to understand how themodel's parameters inuene the distribution. We derive an exat equation of the�Manusript submitted 6 Sep. 2002; revised 28 Apr. and 18 Jul. 2003.yTehnishe Universit�at M�unhen, Inst. of Communiation Networks (LKN), D-80290 Munih,Germany. Ph: +49-89-289-25813. Fax: -23523. Email: bettstetter�ei.tum.de. Web:http://www.lkn.ei.tum.de/~hriszIstituto di Informatia e Telematia, CNR, Area della Riera di San Cataldo, Via G. Moruzzi 1, 56124Pisa, Italy. Ph: +39-050-3152-411. Fax: -333. Email: fgiovanni.resta, paolo.santig�iit.nr.it
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asymptotially stationary distribution for movement on a line segment and an a-urate approximation for a square area. The good quality of this approximationis validated through simulations using various settings of the mobility parameters.In summary, this artile gives a fundamental understanding of the behavior of therandom waypoint model.Index Terms: Mobility modeling, random waypoint model, mobile ad honetworking, simulation1 IntrodutionPerformane analysis in presene of mobility is of major importane in the design of wire-less ommuniation and omputer networks. Sine real movement patterns are diÆult toobtain, a ommon approah is to use syntheti mobility models, whih resemble to someextent the behavior of real \mobile entities" (see [2, 10, 13, 15, 19, 22, 36℄). Based on suhmodels, basi onlusions with respet to ritial network parameters an be provided.The most ommonly used mobility model in the ad ho networking researh ommunityis the random waypoint (RWP) model [21℄. It is implemented in the simulation tools NS2[25℄ and GloMoSim [35℄ and used in many evaluations of network algorithms and protools(see [9, 11, 18℄). In this stohasti model, eah node of the network hooses uniformly atrandom a destination point (\waypoint") in a retangular deployment region Q. A nodemoves to this destination with a veloity v hosen uniformly at random in the interval[vmin; vmax℄. When it reahes the destination, it remains stati for a prede�ned pause timetp, and then starts moving again aording to the same rule.It has been observed in [2,6{8℄ and [28℄ that the spatial distribution of nodes movingaording to the RWP model is non-uniform. Although the initial node positioning istypially taken from a uniform random distribution, the mobility model hanges thisdistribution during the simulation. This e�et, known as border e�et [2℄, ours beausenodes tend to ross the enter of Q with a relatively high frequeny. For a long runningtime of the movement proess, the stohasti distribution of the nodes onverges towardan asymptotially stationary distribution with the maximum node density in the middleof Q.
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The non-uniformity of the RWP node distribution has important pratial onse-quenes. First, it redues the appliability of existing analytial results onerning ad honetworks, whih are typially based on the uniformity assumption. For example, theoret-ial results with respet to routing ([1, 24℄), apaity ([14, 17℄), onnetivity ([3, 16, 30℄),and minimum power issues annot be applied diretly in a mobile senario that employsthe RWP model. Seond, the non-uniform distribution implies that the representative-ness of the huge amount of simulation results obtained by using the RWP model ould beimpaired. This is beause the short-term behavior of the RWP model is quite di�erentfrom the atual long-term behavior. To overome these problems, this artile investigatesin detail the RWP node distribution as a funtion of the mobility parameters.In fat, we onsider a generalized version of the RWP model. In this generalized model,a node may remain stati for the entire simulation time with a given probability. Hene,only a fration of the nodes are expeted to move. Furthermore, we onsider the fat thatnodes are initially distributed aording to an arbitrary spatial distribution. Last, butnot least, we allow the pause time tp to be di�erent after eah movement period.The rest of this artile is organized as follows. Setion 2 outlines related work andmotivates in more detail our interest in the derivation of the RWP node distribution. Se-tion 3 motivates and explains the introdution of the generalized RWP model as desribedabove. We formally haraterize this model as a stohasti proess and disuss some ofits properties that are useful in the derivation of the node distribution. Furthermore, weshow that this distribution is the sum of three distint omponents: the stati, pause,and mobility omponent. This separation enables us to understand the inuene of themodel's parameters on the resulting long-term node distribution. Next, in Setion 4, westudy in detail the mobility omponent of the distribution, i.e., the omponent that re-sults when all nodes are ontinuously moving (tp=0, no stati nodes). We derive an exatequation for RWP movement on a line segment and an aurate approximation for move-ment on a square area. In Setion 5, we haraterize the stati and pause omponents andpresent the expression of the overall node distribution. In Setion 6, several simulationresults show that the approximation used in the derivation of the mobility omponent ona square is negligible in pratie. Finally, Setion 7 summarizes our ontributions.3
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2 Motivation and Related WorkDespite the popularity of the RWPmodel, an in-depth understanding of its behavior is stilllaking in the ommunity. Only reently some papers appeared that study its stohastiproperties and warn researhers of pitfalls that might our when using this model (see[2, 5, 7, 8, 10, 28, 31, 34℄). Probably the �rst simulation{based studies of the spatial nodedistribution were made in [2℄ and [8℄. The fat that the long-term node distribution isdi�erent from the initial uniform distribution, alls into question the representativeness ofmany simulation results in the literature. Typial settings for a simulation-based analysisof ad ho networks are the following: a few tenths or a hundred of nodes are distributeduniformly at random in a retangular region; then, they start moving aording to theRWP model. The behavior of the mobile network is observed for a number of time steps(where one step often orresponds to one seond) in the order of, at most, one thousand.Suh settings have been used, for instane, in the evaluation of routing ([11,12,18,20,21,32℄), multiast [27℄, and energy-onserving [33℄ protools. Given the typial values of themobility parameters used in the simulations, it follows that nodes in the above desribedsenario perform in general only a very limited number of movement periods during thesimulation time. These are in general not enough to reah the \steady state" of thenetwork. In other words, observing the network for relatively few steps after the initialnode positioning is not representative for the atual long-term behavior of the system.The lak of auray of the methodology whih is urrently used to simulate ad honetworks has also been outlined in a reent paper [34℄ from a di�erent perspetive. Theauthors show that the average of the nodes' speed dereases over time and onvergesto a value �v that is stritly less than the initial average speed vmin+vmax2 (unless vmin =vmax = v > 0). Furthermore, setting vmin = 0 (as it is done in many simulations of adho networks [11, 12, 20, 27, 33℄) is partiularly ritial, sine in this ase �v is arbitrarilylose to zero, and the mobile system will eventually onverge to an almost stati one.The authors perform several experiments to support their argumentation, showing thatthe performane of ommonly used routing algorithms an vary onsiderably with time:typially, after an initialization phase, whose duration depends on the values of vmin and4
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vmax, the performane of the protool onverges toward the \steady-state performane."By giving the steady-state distribution of RWP nodes, this artile is a further step inthe diretion of improving the auray of ad ho network simulations.3 De�nition of Generalized RWP Movement3.1 ParametersThe following parameters desribe a simulation setup with generalized RWP mobility ina omplete manner:{ Size and shape of the deployment region Q{ Initial spatial node distribution finit(x){ Stati parameter ps, with 0 � ps � 1{ Probability density funtion fTp(tp) of the pause time{ Minimum speed and maximum speed: 0 < vmin � vmaxIn this artile, we onsider one and two-dimensional deployment regions of the formQ = [0; a℄� with �=1; 2. The initial node distribution finit(x) is used to plae nodes atthe beginning of a simulation in Q. In general, it is di�erent from a uniform distribution.The parameter ps represents the probability that a node remains stati for the entiresimulation time. This aounts for all situations in whih a fration of the nodes are notable to move. This ould be the ase if sensors are spread from a moving vehile, and someof them remain entangled, say, in a bush or tree. This an also model a situation in whihtwo types of nodes are used: one type is stati, and another type is mobile. To a ertainextent, using a separate parameter to model stati nodes solves the pitfall desribed inSetion 2 that arises when vmin is set to 0 as done in many papers. The rationale forsetting vmin=0 was to allow some of the nodes to be \almost stati." Unfortunately, thisimplies that all the network nodes will eventually beome almost stati [34℄, whih seemsto be quite unrealisti in many appliation senarios. In our extended RWP model, wethus expliitly separate the stati and the mobile part of the network.5
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3.2 Stohasti Movement ProessConsidering the mobile part of the network, we note that eah RWP node moves inde-pendently of other nodes. Thus, all nodes have the same stohasti movement properties,and we an onentrate our attention on a single RWP node: its asymptoti spatialdistribution is the same as the asymptoti distribution of all nodes.The movement periods of a node are indexed by the disrete-time parameter i, wherei 2 N , and the ontinuous time is denoted by t. The following random variables are used:{ Destination point Di in its �-dimensional oordinates{ Pause time Tp;i in the destination point Di{ Veloity Vi of the node during period iWith these de�nitions, the RWP model an be formally desribed as a stohasti proessfDi; Tp;i; Vigi2N = f(D1; Tp;1; V1); (D2; Tp;2; V2); : : :g ;where an additional waypoint D0 is needed for initialization. A sample of the proessis denoted by fdi; tp;i; vigi2N. One movement period i is ompletely de�ned by the setf(di�1;di); tp;i; vig.We always assume that the random waypoints Di are independently and identiallydistributed (i.i.d.) at random using the uniform distribution over Q. Only the initialwaypoint D0 is determined by finit(x). The movement vetor from di�1 to di is denotedas trajetory �i. The omplete movement trae of a node an thus be desribed by thesequene of these trajetories, i.e.,f�1; �2; : : : ; �i; : : :g == fd0 � d1;d1 � d2; : : : ;di�1 � di; : : :g :As an alternative to the random variable Di, we also use the random variable Si denotingthe starting waypoint of the i-th movement period. Clearly, the starting point of theurrent period is the destination point of the previous period, i.e., Si = Di�1. Again, weuse lower ase notation for samples of the proess. When we just refer to a single randomvariable of the proess, we omit the index i.6
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Regarding the pause times tp;i, the original RWP model fores the nodes to have thesame pause time tp in eah waypoint during the entire movement proess, i.e., Tp;i= tp=onst: 8i. This is a rather unrealisti aspet of RWP mobility, whih is further ampli�edby the fat that the pause time is assumed to be the same for all the nodes in the network.In our generalized model, we assume that the pause time after eah movement period ishosen from an arbitrary pdf fTp(tp) in the interval [tp;min; tp;max℄ with tp;min � 0 and awell-de�ned expeted value E[Tp℄. This distribution does not hange over time and isthe same for all the nodes in the network. Observe that our probabilisti homogeneityassumption is far less stringent than the equality assumption of the original model.In eah waypoint a node hooses a new speed Vi uniformly at random from the interval[vmin; vmax℄. We expliitly request that vmin>0 to avoid deadloks in the movement pro-ess.3.3 Ergodiity PropertiesIn the derivation of the spatial distribution, the distanes between two onseutive way-points, i.e., the trajetory lengths li=k�ik=kdi�di�1k, play an essential role. While therandom waypoints are independent by de�nition, these random lengths are not stohas-tially independent; in fat, the endpoint of one movement period is the starting point ofthe next movement period. Instead of onsidering a hained set of trajetories, we on-sider a set of independent and disjoint trajetories between pairs of independent randompoints, i.e., f� 01; � 02; : : : ; � 0i ; : : :g == fd00 � d01;d02 � d03; : : : ;d02i�12 � d02i�1; :::g ;where the points are uniformly distributed in Q. We laim that several statistial prop-erties are shared by this independent random point (IRP) proess and the RWP proess.Let us onsider a funtion z(�) of the two endpoints of a trajetory (e.g., the trajetorylength z(�) = k�k), and let us denote the orresponding random variables in the RWPand IRP proess by Z and Z 0, respetively. We want to show that E[Z℄ = E[Z 0℄. To doso, we onsider an in�nite RWP trae f�1; �2; : : :g and an in�nite IRP trae f� 01; � 02; : : :g.7
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By basi probability, we havelimk!1Pki=1 z(�i)k = E[Z℄ and limk!1Pki=1 z(� 0i )k = E[Z 0℄ :We now observe that �1; �3; �5; : : : do not share endpoints, thus they an be regarded astruly independent and behave like a set of movements in the IRP proess. The same holdsfor �2; �4; �6; : : :. Hene we an writeE[Z℄ = limk!1Pk=2i=1 z(�2i�1)k + Pk=2i=1 z(�2i)k == E[Z 0℄2 + E[Z 0℄2 = E[Z 0℄ :If the funtion z(�) is the trajetory length, the equality above implies that the ex-peted value of the trajetory length in the RWP and IRP proess is the same, i.e.E[L℄ = E[L0℄, where L and L0 are random variables denoting the expeted trajetorylength in the RWP and IRP proess, respetively. In the nomenlature of stohastiproesses, we have thus shown a \mean{ergodi property" of the RWP mobility model,i.e., statistially there is no di�erene between sampling repeatedly from a single randomvariable L (or L0) or suessively from the sequene fLigi2N. With respet to our prob-lem, this ergodi property implies, for instane, the following: in order to determine theexpeted value of the trajetory length of a RWP mobile node, the analysis an be sim-pli�ed by onsidering only the distanes between two points plaed uniformly at randomin Q. This allows us to use the following well-known results from the theory of geometriprobability (see [29℄): the expeted distane between two random points is E[L℄ = a=3when the points are uniformly distributed on the one-dimensional line segment [0; a℄, andit is E[L℄ = 0:521405 a when the points are uniformly distributed on the two-dimensionalsquare [0; a℄2.3.4 Components of the Node DistributionWith this formal desription of RWP movement, it an be easily seen that the resultingnode distribution fX(x) is omposed of three distint omponents: the stati, pause, andmobility omponent: fX(x) = fs(x) + fp(x) + fm(x) : (1)8
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Although the three omponents of the distribution in (1) are denoted like pdfs, indeed theyrepresent likelihood funtions, i.e. their integral over Q does not neessarily orrespondsto one. The stati omponent fs(x) aounts for the fat that a node an remain statifor the entire network operational time. The pause omponent fp(x) aounts for thetime that a mobile node \rests" before starting a new movement period. Finally, themobility omponent fm(x) aounts for the time that a mobile node is atually moving.The following two setions ompute these omponents and �nally give an equation for theoverall fX(x).4 The Mobility Component of the Node DistributionIn this setion, we derive the asymptotially stationary node distribution generated bythe generalized RWP model under two assumptions: (a) all nodes are mobile (ps = 0,no stati nodes) and (b) the pause time is set to zero, i.e., fTp(tp) = 1 if tp = 0, and0 otherwise. In other words, we ompute the (normalized) mobility omponent of theoverall distribution. We �rst onsider a one-dimensional RWP model on a line segmentand then extend our analysis to the two-dimensional ase on a square.4.1 One-Dimensional CaseA node moves aording to the RWP model on a line segment [0; a℄. The random variableX denotes the loation of the node, where X 2 [0; a℄. Moreover, the random variables Sand D denote the starting and destination points of a movement period. These points arerandomly hosen from the uniform distribution on the line segment, i.e., their pdfs arefS(s) = fD(d) = 8<: 1a for 0 � s; d � a0 otherwise :In order to derive fX(x), let us �rst alulate the umulative distribution funtion(df) FX(x)=P (X � x), whih denotes the probability that the mobile node is loatedwithin [0; x℄ at an arbitrary instant of time. For eah period i, ti denotes the durationof this period, and tx;i denotes the duration that the node spends within [0; x℄ during9
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(a) One movement period fromS to D
t1 t2 t3 tk

tx,1 tx,2 =0 tx,3 tx,k

t(b) Movement periods and orresponding time val-uesFigure 1: Illustration of RWP movement on line segment [0; a℄.this period (see Fig. 1). If the i-th movement trajetory does not interset [0; x℄, wehave tx;i = 0. The orresponding random variables are denoted by Ti and Tx;i. We nowobserve the RWP proess for a given number, say k, of movement periods. The time thatthe node spends in [0; x℄ during its entire movement proess (Pki=1 tx;i) divided by thetotal movement time of the node (Pki=1 ti) onverges toward P (X � x) as the number ofmovement periods goes to in�nity:P (X � x) = limk!1Pki=1 tx;iPki=1 ti = E[Tx℄E[T ℄ :In eah period i, the node hooses uniformly at random a speed vi 2 [vmin; vmax℄. Letli = viti denote the traveled distane in period i. Similarly, let lx;i = vitx;i denote thetraveled distane within [0; x℄ during this period. The orresponding random variablesare denoted by V , L, and Lx, respetively. Sine V and L are independent randomvariables, and the same holds for V and Lx, we an write E[T ℄ = E �LV �=  � E[L℄ andE[Tx℄=E �LxV �= �E[Lx℄, for some onstant  that depends on the distribution of V . If Vis uniformly distributed in the interval [vmin; vmax℄, with vmin>0, we have = ln(vmax=vmin)vmax�vmin[5℄. Thus, it follows immediately thatP (X � x) = E[Lx℄E[L℄ :An important onsequene of this equation is that the asymptoti df FX(x)=P (X �x) is independent of the speed hoie of the nodes. As mentioned above, we have E[L℄ =a=3 from the literature on stohasti geometry. Thus, we have redued the problem ofalulating FX(x) to the problem of alulating E[Lx℄. In order to do so, let lx(s; d) denote10
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the value of the random variable Lx if S = s and D = d. We have:E[Lx℄ = Z as=0 Z ad=0 lx(s; d) fS(s) fD(d) dd ds :Beause of the symmetry of S and D, it is suÆient to restrit the alulation to periodswith s � d and then multiply the result by a fator of 2. A neessary ondition forlx(s; d) 6= 0 is that ((s � x) ^ (d � x)) _ ((s � x) ^ (d > x)) is true. In the �rst ase wehave lx(s; d) = d� s, and in the seond ase we obtain lx(s; d) = x� s. This yieldsE[Lx℄ = 2a2 Z xs=0 Z xd=s(d� s) dd ds++ 2a2 Z xs=0 Z ad=x(x� s) dd ds = � 23a2 x3 + 1a x2 :The df of X is therefore given byFX(x) = E[Lx℄E[L℄ = � 2a3 x3 + 3a2 x2 ; for 0 � x � a :The probability of �nding a node between x1 and x2 is P (x1<X�x2) = FX(x2)�FX(x1).For example, a node is expeted to reside 68:75% of its movement time within �a4 ; 3a4 �, i.e.,within the entral 50% of the line segment. Using the de�nition of pdf fX(x) = �FX(x)�x ,we an onlude with the following result.Theorem 1 The asymptotially stationary pdf of the loation X of a mobile node movingon a line segment [0; a℄ aording to the generalized RWP model with ps=0 and tp=0 isfX(x) = � 6a3 x2 + 6a2 xfor 0<x<a, and 0 otherwise. Furthermore, the asymptoti distribution is independent ofthe value of vmax and vmin>0 and the initial node distribution.This funtion represents the normalized version of the mobility omponent fm(x) ofthe overall node distribution (1). It is illustrated in Figure 2 and has been validated bysimulations. The probability of �nding a node lose to the border of the line segment goesto zero; the maximum value of fX(x) is at x = 0:5a, and the expeted loation of a nodeis E[X℄ = 0:5 a. 11
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xFigure 2: The asymptoti pdf fX(x) of RWP movement on a line segment4.2 Two-Dimensional CaseIn this setion we onsider the mobility omponent (ps= tp=0) of the spatial distributionin a two-dimensional unit square Q=[0; a℄2. For simpliity, we set a=1. The Cartesianoordinates of a mobile node are X = (X; Y ), where X; Y 2 [0; 1℄. The asymptoti dis-tribution is denoted by fX(x) = fXY (x; y). The starting and destination points, denotedby D = (Dx; Dy) and S = (Sx; Sy), are uniformly distributed in Q. Spei� values of therandom variables are denoted by x; x; y;d; dx; dy, and so on.First of all, we note that the distribution in two dimensions annot be diretly derivedfrom the equation of the one-dimensional ase. In fat, the two-dimensional movement isomposed of two dependent one-dimensional movements. The speed of a node projetedalong the x-axis is not onstant in general, and it is di�erent from the (non-onstant)speed along the y-axis. As we have shown in [2℄ and [26℄, the simple produtfX(x) fX(y) = 36 xy (x� 1) (y � 1) ; for 0 � x; y � 1 ;12
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yields an approximation of the distribution fXY (x; y). Nevertheless, there is a non-negligible di�erene between fX(x)fX(y) and fXY (x; y), and this is why we are interestedin a better expression for the distribution.To derive the exat expression of fXY (x; y), we ould use the same tehnique as inthe one dimensional ase, i.e., alulate FXY (x; y) = P ((X < x) ^ (Y < y)) and thendi�erentiate. However, the integration of the length lxy(s;d), i.e., the moved distanewithin the region de�ned by f(X; Y ) 2 Q j (X � x)^ (Y � y)g, over all possible startingand ending points is very diÆult.For this reason, we use a di�erent tehnique, whih diretly omputes a very goodapproximation of fXY (x; y). Let us assume for a moment that the node veloity is onstantduring the entire observation period, i.e., vmin= vmax= v > 0. With this assumption, wean refer to the length and duration of a trajetory interhangeably. LetP (x; y; Æ) = P �(x� Æ2<X�x + Æ2) ^ (y�Æ2<Y �y+ Æ2)�= Z x+Æ=2x�Æ=2 Z y+Æ=2y�Æ=2 fXY (x0; y0) dy0 dx0denote the probability that the node is in a square of length Æ entered in x = (x; y).This square is denoted as QÆxy in the following (see Fig. 3). If Æ is suÆiently small,fXY (x; y) an be onsidered to be onstant in QÆxy, and P (x; y; Æ) an be rewritten asP (x; y; Æ) = Æ2fXY (x; y). This yieldsfXY (x; y) = limÆ!0 P (x; y; Æ)Æ2 :We now onsider a �xed square QÆxy positioned at x=(x; y), and a trajetory �(s;d)between s and d. As illustrated in Fig. 3, l denotes the total length of the trajetory,i.e., l = l(s;d) = k�(s;d)k, and lÆxy the sub-length inside QÆxy, i.e., lÆxy = lÆxy(x; s;d; Æ) =k�(s;d) \QÆxyk. The orresponding random variables are denoted by L and LÆxy, respe-tively. Clearly, lÆxy = 0 for all �(s;d) that do not interset QÆxy. As in the one-dimensionalase, we an de�ne the expeted sub-length E[LÆxy℄ of a random trajetory inside a givenQÆxy, and write P (x; y; Æ) = E[LÆxy℄E[L℄ : (2)
13
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Figure 3: Intersetion of a trajetory �(s;d) with QÆxy.The expeted trajetory length E[L℄ of the RWP model is equivalent to the expeteddistane between two independent points hosen uniformly at random in Q = [0; 1℄2,whih is E[L℄ = 0:521405 [29℄.The expeted value E[LÆxy℄ depends on the side Æ and on the position x of the smallsquare QÆxy, and an be alulated as the integral of lÆxy(x; s;d; Æ) over all possible startingand destination points in Q, i.e.,E[LÆxy℄ = Zs2Q Zd2Q lÆxy(x; s;d; Æ)fS(s) fD(d) dd ds ; (3)where fD(d)=fS(s)=1 for s;d 2 [0; 1℄2, and dd = ddxddy as well as ds = dsxdsy.Let us �rst onsider the inner integral for a �xed starting point s. Only destinationpoints d for whih the trajetory �(s;d) intersets QÆxy ontribute to the integral. Thisis illustrated in Figure 4: for given s, only destination points inside the shaded polygonyield lÆxy 6= 0. Denoting this polygon by A(x; s; Æ), we an stateZd2Q lÆxy(x; s;d; Æ) dd = Zd2A(x;s;Æ) lÆxy(x; s;d; Æ) dd :Determining the exat expression of this integral seems to be very diÆult. In the follow-ing, we onjeture thatZd2A(x;s;Æ) lÆxy(x; s;d; Æ) dd � Zd2A(x;s;Æ) 1Æ dd= 1 Æ A(x; s; Æ) ;14
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Figure 4: The area of the shaded polygon, denoted as A(x; s; Æ), represents the probabilitythat a trajetory that starts at s intersets QÆxy.for some onstant 1> 0; i.e., independently of the oordinates of x, s, and d, the fun-tion lÆxy(x; s;d; Æ) is aurately approximated by 1Æ. The validity of this onjeture ison�rmed by the experimental analysis reported in Setion 6. If the onjeture holds, wean rewrite (3) as E[LÆxy℄ � 1Æ Zs2QA(x; s; Æ) ds :The area of the polygon A(x; s; Æ), divided by the total area (whih is 1), represents theprobability that a trajetory intersets QÆxy under the ondition that this trajetory startsat s. The probability that a random trajetory intersets QÆxy an thus be alulated asthe integral of A(x; s; Æ) over all possible positions of s in the deployment region Q. Letthis probability be denoted byP� (x; y; Æ) = Zs2QA(x; s; Æ) ds: (4)Plugging the above two equations into (2), we an write:fXY (x; y) = limÆ!0 P (x; y; Æ)Æ2 �  � limÆ!0 P� (x; y; Æ)Æ :Up to a onstant  = 1=E[L℄ > 0 and an approximation, we have redued the originalproblem to the problem of determining the probability that a random trajetory intersetsQÆxy. Observe that it is not neessary to alulate the value of the onstant , sine it willbe absorbed by the multipliative onstant needed to normalize fXY (x; y).15
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Finding the exat expression of the area A(x; s; Æ) is not straightforward. The shape ofthe polygon depends on the positions s and x. For this reason, given the oordinate x, wedivide Q into a number of subareas, with the property that all the starting points in thesame subarea indue polygons with the same shape. This way, we an alulate the partialintegral independently on eah subarea, and obtain the overall integral as the sum of theontributes of all the subareas. Details on how A(x; s; Æ) and, onsequently, fXY (x; y) arealulated an be found in the Appendix. In summary, we obtain the following result.Theorem 2 The asymptotially stationary pdf of the loation X = (X; Y ) of mobile nodesmoving in [0; 1℄2 aording to the generalized RWP model with ps = 0 and tp = 0 an belosely approximated byfXY (x; y) =
=

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

f �XY (x; y) 0 < x � 12 ; 0 < y � xf �XY (y; x) 0 < x � 12 ; x � y � 12f �XY (1� y; x) 0 < x � 12 ; 12 � y � 1� xf �XY (x; 1�y) 0 < x � 12 ; 1� x < y � 1f �XY (1�x; y) 12 � x < 1; 0 < y � 1� xf �XY (y; 1�x) 12 � x < 1; 1� x � y � 12f �XY (1�y; 1�x) 12 � x < 1; 12 � y � xf �XY (1�x; 1�y) 12 � x < 1; x � y < 10 otherwise
;

where f �XY is de�ned on Q� = f(x; y)2 [0; 1℄2 j (0 < x �0:5)^(0 < y � x)g, withf �XY (x; y) = 6y + 34 �1� 2x+ 2x2�� yy � 1 + y2(x� 1) x�+ 3y2 �(2x� 1)(y + 1) ln�1� xx �+ �1� 2x + 2x2 + y� ln�1� yy �� :
Again, fXY (x; y) orresponds to the normalized mobility omponent fm(x). Its plotand some ontour lines are shown in Figure 5. As in the one-dimensional ase, the expeted16
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Figure 5: Plot of the mobility omponent and ontour lines orresponding to the valuesfm(x; y) = 0.5, 1, 1.5 and 2.loation of a node and the maximum of the density are in the middle of the region, atx = (0:5; 0:5). While the density in the middle is rotary symmetri, the ontour linestoward the border beome more and more retangular. The probability of �nding a nodeat the borders of the region goes to zero. Note that, as in the one-dimensional ase, theasymptoti distribution of mobile nodes is independent of the initial node distribution.Furthermore, the proof that fX(x) in one-dimensional networks is independent of thehoie of the node veloities an be generalized to the two-dimensional setting.5 Node Distribution of the Generalized RWP modelIn this setion, we �rst analyze the stati omponent fs(x) and the pause omponentfp(x), then perform proper saling of the mobility omponent fm(x), and �nally show theequation of the overall distribution fX(x) = fs(x) + fp(x) + fm(x).The stati omponent fs(x) an be determined in a straightforward manner from theinitial distribution by observing that a node remains stati with probability ps. Thus, wehave fs(x) = ps finit(x) ;independently of the time t at whih the node is observed.Let us now onsider a node that is not stati. During its RWP movement, it alternatesbetween pause periods (lasting tp;i for the i-th period) and movement periods (lasting17
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ti). The pause periods ontribute to the pause omponent, and the movement periodsontribute to the mobility omponent.For derivation of the pause omponent, we de�ne pp(t) as the probability that a nodeis pausing at time t. Sine the destination points are uniformly distributed in [0; 1℄�,we write fp(x; t) = (1� ps) pp(t)for x2 [0; 1℄�, and 0 otherwise. Sine we are interested in haraterizing the asymptotidensity, we must determine the value of pp(t) for t!1. Assuming that vmin=vmax=v>0,the duration of a movement period depends only on the distane between the startingand destination waypoint, i.e., ti = liv . The total running time of the RWP proess afterperiod k is given by kXi=1 �tp;i + 1v li� :The probability that a node is resting at a randomly hosen time instant therefore ispp = limk!1 Pki=1 tp;iPki=1 tp;i + 1v Pki=1 li = E[Tp℄E[Tp℄ + 1vE[L℄ ;where E[Tp℄ is the expeted value of the pause time distribution fTp(tp), and E[L℄ is thewell-known expeted trajetory length.In order to �nally obtain the mobility omponent, the results on the node distributionof the previous setions must be saled, taking into aount the probability that a node isatually moving at an arbitrary time. Denoting by f 0m(x) the distribution of Theorem 1and 2, the mobility omponent is given byfm(x) = (1� ps)(1� pp) f 0m(x) :Knowing all three omponents, we are now ready to present the main result of thispaper.Theorem 3 The asymptotially stationary pdf of the loation X of nodes moving in Q=[0; 1℄�, with �=1; 2, aording to the generalized RWP model with onstant veloity v>0,is fX(x) = ps finit(x) + (1� ps) pp + (1� ps)(1� pp)f 0m(x)18
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for x2 [0; 1℄�, and 0 otherwise, where pp = �1 + E[L℄v E[Tp℄��1, with E[L℄ = 1=3 for � = 1and E[L℄ = 0:521405 for � = 2. The normalized mobility omponent f 0m(x) is de�ned inTheorem 1 (� = 1) and Theorem 2 (� = 2), respetively.Let us disuss this result, under the assumption that the pause time is �xed to anarbitrary value tp. If the initial node distribution finit(x) is uniform, the asymptotinode distribution fX(x) is the sum of a uniform and a non-uniform omponent. As psand/or tp inrease, the uniform omponent of the density beomes predominant, andfX(x) an be approximated with the uniform distribution. Conversely, for small values ofps and/or tp, the non-uniform omponent dominates and generates a signi�ant \bordere�et." These observations are fully oherent with the statistial analysis presented in[8℄. The inuene of the veloity v on fX(x) is less evident: in general, higher veloitiesause a shorter movement duration and, onsequently, a \more uniform" distribution. Forextreme values of tp the e�et of the veloity is negligible. If tp = 0, the pause omponentof the density will be zero (regardless of the value of v) and the density fX(x) will beindependent of v. Similarly, if tp is very large, then pp � 1 regardless of the value of v.We remark that Theorem 3 has pratial relevane for simulation-based studies ofRWP mobile networks. So far, the only way to investigate relevant asymptoti propertiesof mobile networks was to simulate the nodes movement for a very large number of steps.This is done at the expense of onsiderable omputational resoures. As a onsequene,the number of nodes in the mobile system is usually kept small (it is rarely above 100in existing experimental results). As wireless ad ho networks will beome reality ina near future, their size is likely to grow to as muh as thousands of nodes. Hene,the simulation of large mobile networks, in whih the salability of the protools an bearefully investigated, will beome an issue. We believe that our haraterization of thenode spatial distribution of mobile networks is of great help in the simulation of largemobile ad ho networks.The generation of nodes' positions an be done as follows. A node remains statiduring the entire simulation with probability ps. If the node is non{mobile, its positionis hosen aording to the initial distribution finit(x). If the node is mobile, its position19
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is hosen aording to the equation of Theorem 3, where ps is set to zero1 and the otherparameters reet the settings of the RWP mobility parameters in the simulated senario.It an be easily seen that this proedure puts the system immediately into its asymptoti\steady state," thus avoiding the large number of movement periods needed to make thesystem onverge to this state.6 Experimental EvaluationIn this setion we report the results of the simulation-based experiments that we haveperformed to evaluate how well the equations for the two-dimensional node distributionapproximate the atual distribution.Our simulation tool takes as input the mobility parameters of the RWP model: theprobability ps, the pause time tp , and the parameters of the node veloity (vmin; vmax). Inthe remainder, time measures are expressed as the number of time steps, and length andveloity measures are normalized with respet to the unit square. A number of n = 1000nodes are distributed uniformly and independently at random in [0; 1℄2; then, they startmoving aording to the RWP mobility model. Later on, we will show simulation resultswhere the initial node distribution is not uniform, and the pause time and veloity arerandomly hosen.In order to reord the node spatial distribution, we divide [0; 1℄2 into a number ofsquare ells of the same size, arranged in a grid fashion. In our experiments, we use a gridof 31�31 ells with side lengths 1=31. After t=10000 time steps, the number of nodes ineah ell is reorded. These numbers are aumulated over 10000 simulation runs, and arereported as the result of the experiment. These values for the number of mobility stepsand simulation runs are hosen beause they are a good ompromise between statistialauray and running time. If the theoretial analysis is aurate, the normalized plotobtained by using these data should losely resemble that obtained by our equation.In the �rst series of experiments, we onsider a senario with mobile nodes only and1Sine stati nodes are onsidered separately in the position generation proess, the stati omponentof the density f(x) must be set to 0. 20
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networks with RWP mobility. Given the distribution fX(x) derived in this paper, theaverage route length and the onnetivity (just to ite two well studied properties in thestati ase) in presene of RWP mobility an be analyzed in a theoretial framework.For example, we an now ompute the simulation parameters needed to obtain an almostsurely onneted ad ho network with RWP mobility. By setting these parameters aord-ingly, a researher an be sure that the simulated RWP network is onneted during mostof the simulation time. A �rst step forward in this diretion was made in [4℄. Note that,without an expliit expression for fX(x), it is impossible to ompare simulation resultsbased on RWP mobility with analytial results, beause the latter are typially based onuniform node distribution.Last but not least, the derivation of fX(x) gives us a better understanding on howthe RWP model behaves and why it behaves like this. For example, we have veri�ed thatthe asymptotially stationary normalized mobility omponent is independent of the speedhoie of the nodes and their initial spatial distribution.A Calulating fXYThe division of the unit square into subareas for a given position of QÆxy is reported inFigure 13. First, we divide Q = [0; 1℄2 into four quadrants Q1; : : : ; Q4. Quadrants areseparated from eah other by strips of width Æ, obtained by extending the sides of QÆxyto the borders. Eah quadrant is then further divided into three sub-quadrants, obtainedby extending the lines that onnet the opposite orner of the unit square to oppositeverties of QÆxy. We then have a total of 16 regions. For larity, only the division of the�rst quadrant is shown in Fig. 13. We observe that the area of some of these regionsapproahes 0 as Æ ! 0, hene their ontribution an be omitted when alulating thevalue of the overall integral. This is the ase of the area of the four strips of width Æ, aswell as of the area of Q12 and of the orresponding regions in the other quadrants. Thus,we an rewrite the overall integral of (4) asZZQA(x; s; Æ) ds = Xi=1;:::;4 ZZQi A(x; s; Æ) ds ;25
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Figure 13: Division of unit square into quadrants and sub-quadrants.where eah of the summands an be omputed byZZQi A(x; s; Æ) ds =ZZQi1 A(x; s; Æ) ds+ ZZQi3 A(x; s; Æ) ds : (5)In the remaining derivation of fXY (x; y), we make use of symmetries in the problem.Sine we are onsidering a square deployment region, it is suÆient to know the nodedistribution in the subregion Q� = f(x; y) 2 [0; 1℄2 j (0 < x � 0:5)^(0 < y � x)g. Thedistribution in the other subregions of Q is obtained by proper variable substitutions. Wedenote the distribution in Q� by f �XY (x; y).Under the assumption that QÆxy is loated in Q�, let us detail the alulation of onesummand in (5). In general, the area of a onvex polygon de�ned by n points x1 =(x1; y1); : : : ;xn = (xn; yn) an be alulated by A = 12((x1�x2)(y1+y2) + (x2�x3)(y2+y3)+ : : : + (xn � x1)(yn + y1)), where the n points must be ordered ounterlokwise. Let
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1CCCCCCCCCA = 0BBBBBBBBB�
x� Æ2 y + Æ2x� Æ2 y � Æ2(x�Æ=2�sx)sysy�y+Æ=2 + sx 0(x+Æ=2�sx)sysy�y�Æ=2 + sx 0x+ Æ2 y + Æ2

1CCCCCCCCCA ;
whih yields A(x; s; Æ) == 12 Æ �Æ � x+ sx + y � sy + 4s2y(sx�x+y�sy)(2y�2sy+Æ)(2sy�2y+Æ)� :This area must be integrated over Q11. Observing that the line that delimits the lowerside of Q11 has equation y(x) = m11x+q11, where m11 = 2y+Æ2x�2+Æ and q11 = �m11, we writeZZQ11 A(x; s; Æ) ds = x� Æ2Z0 1Zm11sx+q11 A(x; sx; sy; Æ) dsy dsx : (6)
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Taking the limit of (6), divided by Æ, as Æ goes to 0, yieldslimÆ!0 (6)Æ = 14 xy"x2 + x(6y � 7) + 2(3� 4y + y2)(x� 1)(y � 1)+ 2(x + y) ln��1x � 1��1y � 1��#This term gives the ontribution of Q11 to the node density. The derivation of the partialintegrals referring to the other regions an be obtained by similar geometri arguments,and is not reported for the sake of brevity. The overall density an be alulated bysumming the ontribution of all the regions.The resulting expression, whih we denote f �XY (x; y), must be normalized in suh a waythat RQ� f �XY (x; y)dxdy = 18 , sine the area of Q� is 18 . After long and tedious alulation,whih is not reported, we have obtained the expression reported in the statement ofTheorem 2.AknowledgmentsC. Bettstetter was supported by the German Siene Foundation (DFG). Some parts ofthis artile are based on the authors' workshop papers [7, 8℄ and [26℄.Referenes[1℄ I. D. Aron and S. Gupta, \Analytial omparison of loal and end-to-end error reov-ery in reative routing protools for mobile ad ho networks," in Pro. ACM Work-shop on Modeling, Analysis and Sim. of Wireless and Mobile Systems (MSWiM),(Boston, MA), 2000.[2℄ C. Bettstetter, \Mobility modeling in wireless networks: Categorization, smoothmovement, and border e�ets," ACM Mobile Comp. and Comm. Review, vol. 5,no. 3, 2001.
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